Introducing Experion as a Primal Cognitive Unit of Neural Processing

  • Oscar Vilarroya
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 5)


The aim of this manuscript is to introduce the notion of experion. This notion is proposed as the primal cognitive unit of neural processing. The proposal focuses on the fact that neural systems have evolved to characterize and act in the situation in which they are involved according to the needs and state of the system, primed by past experience and biased by neurobiological predispositions. The proposal goes on to acknowledge a cluster of principles that characterize neural functioning by its cognitive openness, contingent specialization and selection, as well as cross-modality and heterarchical processing. The proposed framework assumes these facts and hypothesizes that the basic unit is a neural event that holistically integrates all neural processes that take part in addressing the adaptive topic at issue. In particular, I have defined an experion as a neural controlled event within which a particular neuroenvironmental configuration of contents are created to deal with the individual’s adaptive topic at issue. The specific nature of such contents and its ability to address the topic at issue are a product of the deployment of the relevant associations with previous registers of such couplings channeled through the basic operations of the neural architecture. The evolutionary bottom line is that the neural system should not be seen as a system that represents reality, but a system that adapts to it, adjusting the agent to the environment in the best way to obtain its objectives: experiencing, and learning from it.


Neural System Neural Circuit Basic Operation Neural Processing Extended Mind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M.L.: Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences 33(04), 245–266 (2010)CrossRefGoogle Scholar
  2. Barkow, J.H., Cosmides, L., Tooby, J.: The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press, New York (1995)Google Scholar
  3. Barrett, H.C., Kurzban, R.: Modularity in cognition: Framing the debate. Psychological Review 113(3), 628–647 (2006)CrossRefGoogle Scholar
  4. Bizley, J.K., Nodal, F.R., Bajo, V.M., Nelken, I., King, A.J.: Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cerebral Cortex 17(9), 2172–2189 (2007)CrossRefGoogle Scholar
  5. Black, F.O., Paloski, W.H., Doxey-Gasway, D.D., Reschke, M.F.: Vestibular plasticity following orbital spaceflight: Recovery from postflight postural instability. Acta Oto-Laryngologica 520(pt 2), 450–454 (1995)CrossRefGoogle Scholar
  6. Borel, L., Lopez, C., Peruch, P., Lacour, M.: Vestibular syndrome: A change in internal spatial representation. Neurophysiologie Clinique = Clinical Neurophysiology 38(6), 375–389 (2008)CrossRefGoogle Scholar
  7. Bray, A., Subanandan, A., Isableu, B., Ohlmann, T., Golding, J.F., Gresty, M.A.: We are most aware of our place in the world when about to fall. Current Biology: CB 10, R609–R610 (2004)CrossRefGoogle Scholar
  8. Briand, L.A., Gritton, H., Howe, W.M., Young, D.A., Sarter, M.: Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Progress in Neurobiology 83(2), 69–91 (2007)CrossRefGoogle Scholar
  9. Cappe, C., Barone, P.: Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. The European Journal of Neuroscience 22(11), 2886–2902 (2005)CrossRefGoogle Scholar
  10. Cardin, V., Friston, K.J., Zeki, S.: Top-down modulations in the visual form pathway revealed with dynamic causal modeling. Cerebral Cortex 21(3), 550–562 (2011)CrossRefGoogle Scholar
  11. de Lange, F.P., Jensen, O., Dehaene, S.: Accumulation of evidence during sequential decision making: The importance of top-down factors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30(2), 731–738 (2010)CrossRefGoogle Scholar
  12. Foxe, J.J., Schroeder, C.E.: The case for feedforward multisensory convergence during early cortical processing. Neuroreport 16(5), 419–423 (2005)CrossRefGoogle Scholar
  13. Fuster, J.M.: The cognit: A network model of cortical representation. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 60(2), 125–132 (2006)CrossRefGoogle Scholar
  14. Ghazanfar, A.A., Schroeder, C.E.: Is neocortex essentially multisensory? Trends in Cognitive Sciences 10(6), 278–285 (2006)CrossRefGoogle Scholar
  15. Ghoshal, A., Tomarken, A., Ebner, F.: Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience. Journal of Neuroscience 31(7), 2526–2536 (2011)CrossRefGoogle Scholar
  16. Giard, M.H., Peronnet, F.: Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience 11(5), 473–490 (1999)CrossRefGoogle Scholar
  17. Gilbert, C.D., Sigman, M.: Brain states: Top-down influences in sensory processing. Neuron 54, 677–696 (2007)CrossRefGoogle Scholar
  18. Glenberg, A.M., Kaschak, M.P.: Grounding language in action. Psychonomic Bulletin & Review 9(3), 558–565 (2002)CrossRefGoogle Scholar
  19. Glenberg, A.M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., Buccino, G.: Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology 61(6), 905–919 (2006, 2008)Google Scholar
  20. Guterstam, A., Petkova, V.I., Ehrsson, H.H.: The illusion of owning a third arm. PLoS ONE 6(2), e17208 (2011)CrossRefGoogle Scholar
  21. Hills, T.T., Todd, P.M., Goldstone, R.L.: Search in external and internal spaces. Psychological Science 19(8), 802–808 (2008)CrossRefGoogle Scholar
  22. Kherif, F., Josse, G., Price, C.J.: Automatic top-down processing explains common left occipito-temporal responses to visual words and objects. Cerebral Cortex 21(1), 103–114 (2011)CrossRefGoogle Scholar
  23. Llinás, R., Paré, D.: The brain as a closed system modulated by the senses. In: McCauley, R.N. (ed.) The Churchlands and Their Critics, p. 318. Blackwell Publishers, Cambridge (1996)Google Scholar
  24. Lupyan, G., Thompson-Schill, S.L., Swingley, D.: Conceptual penetration of visual processing. Psychological Science 21(5), 682–691 (2010)CrossRefGoogle Scholar
  25. Mason, O.J., Brady, F.: The psychotomimetic effects of short-term sensory deprivation. The Journal of Nervous and Mental Disease 197(10), 783–785 (2009)CrossRefGoogle Scholar
  26. McMains, S., Kastner, S.: Interactions of top-down and bottom-up mechanisms in human visual cortex. Journal of Neuroscience 31(2), 587–597 (2011)CrossRefGoogle Scholar
  27. Menary, R.: The extended mind. MIT Press, Cambridge (2010)Google Scholar
  28. Meredith, M.A., Keniston, L.R., Dehner, L.R., Clemo, H.R.: Crossmodal projections from somatosensory area SIV to the auditory field of the anterior ectosylvian sulcus (FAES) in cat.: Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale 172(4), 472–484 (2006)CrossRefGoogle Scholar
  29. Noë, A.: Action in perception. MIT Press, Cambridge (2004)Google Scholar
  30. Noë, A., Thompson, E.: Vision and mind. MIT Press, Cambridge (2002)Google Scholar
  31. O’Regan, J.K., Noe, A.: A sensorimotor account of vision and visual consciousness. The Behavioral and Brain Sciences 24(5), 939–973 (2001); discussion 973-1031CrossRefGoogle Scholar
  32. Passingham, R.E., Stephan, K.E., Kotter, R.: The anatomical basis of functional localization in the cortex. Nature Reviews. Neuroscience 3(8), 606–616 (2002)Google Scholar
  33. Pulvermuller, F.: Brain mechanisms linking language and action. Nature Reviews. Neuroscience 6(7), 576–582 (2005)CrossRefGoogle Scholar
  34. Reperant, J., Ward, R., Miceli, D., Rio, J.P., Medina, M., Kenigfest, N.B., et al.: The centrifugal visual system of vertebrates: A comparative analysis of its functional anatomical organization. Brain Research Reviews 52(1), 1–57 (2006)CrossRefGoogle Scholar
  35. Robbins, P., Aydede, M.: The cambridge handbook of situated cognition. Cambridge University Press, Cambridge (2009)Google Scholar
  36. Rockland, K.S., Ojima, H.: Multisensory convergence in calcarine visual areas in macaque monkey. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 50(1-2), 19–26 (2003)CrossRefGoogle Scholar
  37. Shams, L., Kim, R.: Crossmodal influences on visual perception. Physics of Life Reviews 7(3), 269–284 (2010)CrossRefGoogle Scholar
  38. Simon, H.A.: The sciences of the artificial, 2nd edn. MIT Press, Cambridge (1981)Google Scholar
  39. Smith, B.: Situatedness/embeddedness. In: Wilson, R.A., Keil, F.C. (eds.) MIT encyclopedia of the cognitive sciences (Computer data a program ed.,). MIT Press, Cambridge (1999)Google Scholar
  40. Smith, L.B.: Cognition as a dynamic system: Principles from embodiment. Developmental Review 25(3-4), 278–298 (2005)CrossRefGoogle Scholar
  41. Stein, B.E., Stanford, T.R.: Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews. Neuroscience 9(4), 255–266 (2008)CrossRefGoogle Scholar
  42. Teufel, C., Alexis, D.M., Todd, H., Lawrance-Owen, A.J., Clayton, N.S., Davis, G.: Social cognition modulates the sensory coding of observed gaze direction. Current Biology 19(15), 1274–1277 (2009)CrossRefGoogle Scholar
  43. Thompson, E., Stapleton, M.: Making sense of sense-making: Reflections on enactive and extended mind theories. Topoi 28(1), 23–30 (2009)CrossRefGoogle Scholar
  44. Uttal, W.R.: A credo for a revitalized behaviorism: Characteristics and emerging principles. Behavioural Processes 54(1-3), 5–10 (2001)CrossRefGoogle Scholar
  45. Vilarroya Oliver, Ó.: The dissolution of mind: A fable of how experience gives rise to cognition. Rodopi, Amsterdam (2002)Google Scholar
  46. Vilarroya, O.: From Functional Mess to Bounded Functionality. Minds and Machines 11(2), 239–256 (2001)zbMATHCrossRefGoogle Scholar
  47. Vilarroya, O.: “Two” many optimalities. Biology and Philosophy 17(2), 251–270 (2002)CrossRefGoogle Scholar
  48. Wang, Y., Liu, D., Wang, Y.: Brain and Mind 4(2), 189–198 (2003)CrossRefGoogle Scholar
  49. Wojtach, W.T., Sung, K., Purves, D.: An empirical explanation of the speed-distance effect. PloS One 4(8), e6771 (2009)CrossRefGoogle Scholar
  50. Yates, B.J., Kerman, I.A.: Post-spaceflight orthostatic intolerance: Possible relationship to microgravity-induced plasticity in the vestibular system. Brain Research.Brain Research Reviews 28(1-2), 73–82 (1998)CrossRefGoogle Scholar
  51. Yoshida, T., Katz, D.B.: Control of prestimulus activity related to improved sensory coding within a discrimination task. Journal of Neuroscience 31(11), 4101–4112 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Oscar Vilarroya
    • 1
    • 2
  1. 1.Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Fundació IMIMBarcelonaSpain

Personalised recommendations