Efficient Multiplication over Extension Fields

  • Nadia El Mrabet
  • Nicolas Gama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)

Abstract

The efficiency of cryptographic protocols rely on the speed of the underlying arithmetic and finite field computation. In the literature, several methods on how to improve the multiplication over extensions fields \(\mathbb{F}_{q^{m}}\), for prime q were developped. These optimisations are often related to the Karatsuba and Toom Cook methods. However, the speeding-up is only interesting when m is a product of powers of 2 and 3. In general cases, a fast multiplication over \(\mathbb{F}_{q^{m}}\) is implemented through the use of the naive school-book method. In this paper, we propose a new efficient multiplication over \(\mathbb{F}_{q^{m}}\) for any power m. The multiplication relies on the notion of Adapted Modular Number System (AMNS), introduced in 2004 by [3]. We improve the construction of an AMNS basis and we provide a fast implementation of the multiplication over \(\mathbb{F}_{q^{m}}\), which is faster than GMP and NTL.

Keywords

Discrete Fourier Transform Elliptic Curve Cryptography Short Vector Fast Fourier Transformation Method Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NIST Key Length Recommendations, http://www.keylength.com/
  2. 2.
    Recommendations for Key Management. Special Publication 800-57 Part 1 (2007)Google Scholar
  3. 3.
    Bajard, J.-C., Imbert, L., Plantard, T.: Modular Number Systems: Beyond the Mersenne Family. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 159–169. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bodrato, M.: Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Brier, E., Joye, M.: Fast Point Multiplication on Elliptic Curves Through Isogenies. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 43–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Chung, J., Hasan, A.: More Generalized Mersenne Numbers (Extended Abstract). In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 335–347. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Devegili, A.J., Ó hÉigeartaigh, C., Scott, M., Dahab, R.: Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471 (2006), http://eprint.iacr.org/
  10. 10.
    El Mrabet, N., Negre, C.: Finite Field Multiplication Combining AMNS and DFT Approach for Pairing Cryptography. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 422–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Katti, R., Brennan, J.: Low Complexity Multiplication in a Finite Field Using Ring Representation. IEEE Transactions on Computers 52(4), 418–427 (2003)CrossRefGoogle Scholar
  15. 15.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Ann. 261, 513–534 (1982)Google Scholar
  16. 16.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  17. 17.
    Minkowski, H.: Geometrie der Zahlen. Druck und Verlag von B.G. Teubner, Leipzig und Berlin (1910)Google Scholar
  18. 18.
    Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Transactions on Computers 54(3), 362–369 (2005)MATHCrossRefGoogle Scholar
  19. 19.
    El Mrabet, N., Guillevic, A., Ionica, S.: Efficient Multiplication in Finite Field Extensions of Degree 5. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 188–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Negre, C., Plantard, T.: Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 463–477. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Rubin, K., Silverberg, A.: Torus-Based Cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Schnorr, C.-P.: A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Shoup, V.: Number Theory Library (1996), http://www.shoup.net/ntl
  25. 25.
    Silverman, J.H.: Rings of low multiplicative complexity. In: Finite Fields and Their Applications, vol. 6, pp. 175–191. Academic Press (2000)Google Scholar
  26. 26.
    van Dijk, M., Granger, R., Page, D., Rubin, K., Silverberg, A., Stam, M., Woodruff, D.: Practical Cryptography in High Dimensional Tori. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 234–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Von ZurGathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nadia El Mrabet
    • 1
  • Nicolas Gama
    • 2
  1. 1.LIASD - Université Paris 8France
  2. 2.Université de Versailles - PRISM - CNRSFrance

Personalised recommendations