Advertisement

Hairpin Completion with Bounded Stem-Loop

  • Szilárd Zsolt Fazekas
  • Robert Mercaş
  • Kayoko Shikishima-Tsuji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7410)

Abstract

Pseudopalindromes are words that are fixed points for some antimorphic involution. In this paper we discuss a newer word operation, that of pseudopalindromic completion, in which symbols are added to either side of the word such that the new obtained words are pseudopalindromes. This notion represents a particular type of hairpin completion, where the length of the hairpin is at most one. We give precise descriptions of regular languages that are closed under this operation and show that the regularity of the closure under the operation is decidable.

Keywords

Regular Language Primitive Root Short Word Membership Problem Pigeon Hole Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheptea, D., Martín-Vide, C., Mitrana, V.: A new operation on words suggested by DNA biochemistry: Hairpin completion. Trans. Comput., 216–228 (2006)Google Scholar
  2. 2.
    de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183(1), 45–82 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids. Theor. Comput. Sci. 362(1-3), 282–300 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Diekert, V., Kopecki, S., Mitrana, V.: On the Hairpin Completion of Regular Languages. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 170–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)zbMATHGoogle Scholar
  6. 6.
    Horváth, S., Karhumäki, J., Kleijn, J.: Results concerning palindromicity. J. Inf. Process. Cybern. 23, 441–451 (1987)zbMATHGoogle Scholar
  7. 7.
    Ito, M., Leupold, P., Manea, F., Mitrana, V.: Bounded hairpin completion. Inf. Comput. 209(3), 471–485 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kari, L., Kopecki, S., Seki, S.: Iterated Hairpin Completions of Non-crossing Words. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 337–348. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kari, L., Mahalingam, K.: Watson–Crick palindromes in DNA computing. Nat. Comput. 9(2), 297–316 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kopecki, S.: On iterated hairpin completion. Theor. Comput. Sci. 412(29), 3629–3638 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press (1962/1997)Google Scholar
  12. 12.
    Mahalingam, K., Subramanian, K.G.: Palindromic completion of a word. In: BIC-TA, pp. 1459–1465. IEEE (2010)Google Scholar
  13. 13.
    Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)zbMATHCrossRefGoogle Scholar
  14. 14.
    Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Appl. Math. 157(9), 2143–2152 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion. Int. J. Found. Comput. Sci. 21(5), 859–872 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Paun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. Int. J. Found. Comput. Sci., 837–847 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Szilárd Zsolt Fazekas
    • 1
  • Robert Mercaş
    • 2
  • Kayoko Shikishima-Tsuji
    • 3
  1. 1.Department of MathematicsKyoto Sangyo UniversityKita-KuJapan
  2. 2.Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.Tenri UniversityTenriJapan

Personalised recommendations