P and dP Automata: Unconventional versus Classical Automata

  • Erzsébet Csuhaj-Varjú
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7410)

Abstract

In this paper we discuss P automata and their distributed systems, called dP automata, constructs combining properties of classical automata and membrane systems being in interaction with their environments. We describe the most important variants and their properties, demonstrate their standard and non-standard features compared to characteristics of classical automata.

Keywords

Regular Language Skin Region Rule Application Language Class Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bel-Enguix, G., Gramatovici, R.: Parsing with P automata. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 389–410. Springer, Berlin (2006)Google Scholar
  2. 2.
    Birget, J.-C.: Two-way automaton computations. RAIRO Informatique Théorique et Application 24, 44–66 (1990)MathSciNetGoogle Scholar
  3. 3.
    Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E.: P Automata: Concepts, Results, and New Aspects. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of P Automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 76–89. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. Natural Computing 5(2), 109–126 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, ch. 6, pp. 144–167. Oxford University Press, Oxford (2010)Google Scholar
  9. 9.
    Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-Proceedings of the Workshop on Membrane Computing WMC-CdeA 2002, Curtea de Argeş, Romania, August 19-23, pp. 177–192. Pub. No. 1 of MolCoNet-IST-2001-32008 (2002)Google Scholar
  10. 10.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Csuhaj-Varjú, E., Vaszil, G.: (Mem)brane automata. Theoretical Computer Science 404(1-2), 52–60 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Csuhaj-Varjú, E., Vaszil, G.: Finite dP Automata versus Multi-head Finite Automata. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 120–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Dassow, J., Vaszil, G.: P Finite Automata and Regular Languages over Countably Infinite Alphabets. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 367–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP automata. Mathematics-Informatics Series, vol. 63, pp. 5–22. Annals of Bucharest University (2009)Google Scholar
  15. 15.
    Freund, R., Martín-Vide, C., Obtułowicz, A., Păun, G.: On Three Classes of Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 292–303. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the EATCS 78, 231–236 (2002)MathSciNetMATHGoogle Scholar
  17. 17.
    Freund, R., Oswald, M., Staiger, L.: ω-P Automata with Communication Rules. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 203–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally parallel derivation mode. In: Csuhaj-Varjú, E., Freund, R., Oswald, M., Salomaa, K. (eds.) International Workshop on Computing with Biomolecules, Wien, Austria, August 27, pp. 43–52. Österreichische Computer Gesellschaft (2008)Google Scholar
  19. 19.
    Hartmanis, J.: On non-determinacy in simple computing devices. Acta Informatica 1, 336–344 (1972)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoretical Computer Science 412, 83–96 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ibarra, O.H.: The Number of Membranes Matters. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) WMC 2003. LNCS, vol. 2933, pp. 218–231. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theoretical Computer Science 320(1), 89–109 (2004)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Ibarra, O.H., Păun, G.: Characterization of context-sensitive languages and other language classes in terms of symport/antiport P systems. Theoretical Computer Science 358(1), 88–103 (2006)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134, 329–363 (1994)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Martín-Vide, C., Păun, A., Păun, G.: On the power of P systems with symport rules. Journal of Universal Computer Science 8, 317–331 (2002)Google Scholar
  26. 26.
    Oswald, M.: P Automata. PhD dissertation, Vienna University of Technology, Vienna (2003)Google Scholar
  27. 27.
    Otto, F.: Classes of regular and context-free languages over countably infinite alphabets. Discrete Applied Mathematics 12, 41–56 (1985)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–305 (2002)MATHCrossRefGoogle Scholar
  29. 29.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  31. 31.
    Păun, G., Pérez-Jiménez, M.J.: Solving Problems in a Distributed Way in Membrane Computing: dP Systems. Int. J. of Computers, Communication & Control V(2), 238–250 (2010)Google Scholar
  32. 32.
    Păun, G., Pérez-Jiménez, M.J.: P and dP Automata: A Survey. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science. LNCS, vol. 6570, pp. 102–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Păun, G., Pérez-Jiménez, M.J.: P automata revisited. Theoretical Computer Science (in press, 2012)Google Scholar
  34. 34.
    Păun, G., Pérez-Jiménez, M.J.: An Infinite Hierarchy of Languages Defined by dP Systems. Theoretical Computer Science (in press, 2012)Google Scholar
  35. 35.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)MATHGoogle Scholar
  36. 36.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I-III. Springer, Heidelberg (1997)MATHGoogle Scholar
  37. 37.
    Vaszil, G.: Automata-like membrane systems - A natural way to describe complex phenomena. In: Campeanu, C., Pighizzini, G. (eds.) Proceedings of 10th International Workshop on Descriptional Complexity of Formal Systems, Charlottetown, PE, Canada, July 16-18, pp. 26–37. University of Prince Edwards Island (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsEötvös Loránd UniversityBudapestHungary

Personalised recommendations