Advertisement

Analogs of Fagin’s Theorem for Small Nondeterministic Finite Automata

  • Christos A. Kapoutsis
  • Nans Lefebvre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7410)

Abstract

Let 1N and SN be the classes of families of problems solvable by families of polynomial-size one-way and sweeping nondeterministic finite automata, respectively. We characterize 1N in terms of families of polynomial-length formulas of monadic second-order logic with successor. These formulas existentially quantify two local conditions in disjunctive normal form: one on cells polynomially away from the two ends of the input, and one more on the cells of a fixed-width window sliding along it. We then repeat the same for SN and for slightly more complex formulas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birget, J.-C.: Two-way automata and length-preserving homomorphisms. Mathematical Systems Theory 29, 191–226 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer (1997)Google Scholar
  3. 3.
    Büchi, R.J.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6(1-6), 66–92 (1960)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation. AMS-SIAM Symposia in Applied Mathematics, vol. VII, pp. 43–73 (1974)Google Scholar
  5. 5.
    Immerman, N.: Descriptive complexity. Springer (1998)Google Scholar
  6. 6.
    Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)Google Scholar
  9. 9.
    Reinhardt, K.: The Complexity of Translating Logic to Finite Automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 231–238. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)Google Scholar
  11. 11.
    Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25(3), 360–376 (1982)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christos A. Kapoutsis
    • 1
  • Nans Lefebvre
    • 1
  1. 1.LIAFA, Université Paris VIIFrance

Personalised recommendations