Cooperating Distributed Tree Automata

  • Henning Fernau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7300)


We propose a study on cooperating distributed tree automata, proving in particular characterizations of the yields of such automata systems.


Derivation Tree Tree Automaton Tree Language Tree Transducer Word Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appelt, D.E.: Bidirectional grammars and the design of natural language generation systems. In: Proceedings of Third Conference on Theoretical Issues in Natural Language Processing (TINLAP-3), January 7-9, pp. 185–191. New Mexico State University, Las Cruces (1987)Google Scholar
  2. 2.
    Asveld, P.R.J., Hogendorp, J.A.: On the generating power of regularly controlled bidirectional grammars. International Journal of Computer Mathematics 40 (1991)Google Scholar
  3. 3.
    ter Beek, M.H., Csuhaj-Varjú, E., Holzer, M., Vaszil, G.: Cooperating Distributed Grammar Systems: Components with Nonincreasing Competence. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 70–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bensch, S., Björklund, H., Drewes, F.: Algorithmic Properties of Millstream Systems. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 54–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bensch, S., Drewes, F.: Millstream systems — a formal model for linking language modules by interfaces. In: Workshop on Applications of Tree Automata in Natural Language Systems, pp. 28–36. Association for Computational Linguistics ACL (2010)Google Scholar
  6. 6.
    Bordihn, H., Csuhaj-Varjú, E.: On competence and completeness in CD grammar systems. Acta Cybernetica 12, 347–360 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bordihn, H., Fernau, H.: Accepting grammars with regulation. International Journal of Computer Mathematics 53, 1–18 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bordihn, H., Fernau, H.: Accepting grammars and systems via context condition grammars. Journal of Automata, Languages and Combinatorics 1(2), 97–112 (1996)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Courcelle, B., Lapoire, D.: Facial Circuits of Planar Graphs and Context-Free Languages. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 616–624. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 26(1/2), 49–63 (1990)zbMATHGoogle Scholar
  11. 11.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1994)zbMATHGoogle Scholar
  12. 12.
    Csuhaj-Varjú, E., Dassow, J., Vaszil, G.: Variants of competence-based derivations in cd grammar systems. International Journal of Foundations of Computer Science 21(4), 549–569 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Csuhaj-Varjú, E., Mitrana, V., Vaszil, G.: Distributed Pushdown Automata Systems: Computational Power. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 218–229. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Dassow, J.: On cooperating distributed grammar systems with competence based start and stop conditions. Fundamenta Informaticae 76(3), 293–304 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dassow, J., Mitrana, V.: Cooperating distributed push-down automata. Tech. rep., Universität Magdeburg, Fakultät für Informatik (1996)Google Scholar
  16. 16.
    Dassow, J., Mitrana, V.: Stack cooperation in multistack pushdown automata. Journal of Computer and System Sciences 58(3), 611–621 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dassow, J., Păun, G., Vicolov, S.: On the power of cooperating/distributed grammar systems with regular components. Foundations of Computing and Decision Sciences 18(2), 83–108 (1993)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Doner, J.: Tree acceptors and some of their applications. Journal of Computer and System Sciences 4(5), 406–451 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Drewes, F., van der Merwe, B.: Path languages of random permitting context tree grammars are regular. Fundamenta Informaticae 82(1-2), 47–60 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Drewes, F., du Toit, C., Ewert, S., van der Merwe, B., van der Walt, A.P.J.: Random context tree grammars and tree transducers. South African Computer Journal 34, 11–25 (2005)zbMATHGoogle Scholar
  21. 21.
    Drewes, F., du Toit, C., Ewert, S., van der Merwe, B., van der Walt, A.P.J.: Bag context tree grammars. Fundamenta Informaticae 86(4), 459–480 (2008)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fernau, H., Freund, R., Holzer, M.: Hybrid modes in cooperating distributed grammar systems: combining the t-mode with the modes ≤ k and = k. Theoretical Computer Science 299, 633–662 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fernau, H., Holzer, M.: Accepting multi-agent systems II. Acta Cybernetica 12, 361–379 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fernau, H., Holzer, M.: Bidirectional cooperating distributed grammar systems. Publicationes Mathematicae, Debrecen 54(supplement), 787–806 (1999)Google Scholar
  25. 25.
    Fernau, H., Holzer, M., Bordihn, H.: Accepting multi-agent systems: the case of cooperating distributed grammar systems. Computers and Artificial Intelligence 15(2-3), 123–139 (1996)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fernau, H., Holzer, M., Freund, R.: Hybrid modes in cooperating distributed grammar systems: internal versus external hybridization. Theoretical Computer Science 259(1-2), 405–426 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hogendorp, J.A.: Controlled bidirectional grammars. International Journal of Computer Mathematics 27, 159–180 (1989)CrossRefGoogle Scholar
  28. 28.
    Kasprzik, A.: Making finite-state methods applicable to languages beyond context-freeness via multi-dimensional trees. In: Piskorski, J., Watson, B., Yli-Jyrä, A. (eds.) Post-proceedings of the 7th International Workshop on Finite-State Methods and Natural Language Processing, pp. 98–109. IOS Press, Amsterdam (2009)Google Scholar
  29. 29.
    Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML transformations. Journal of Computer and System Sciences 73(3), 362–390 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Martens, W., Neven, F., Gyssens, M.: Typechecking top-down XML transformations: Fixed input or output schemas. Information and Computation 206(7), 806–827 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mihalache, V.: Accepting cooperating distributed grammar systems with terminal derivation. EATCS Bulletin 61, 80–84 (1997)zbMATHGoogle Scholar
  32. 32.
    Mitrana, V.: Hybrid cooperating/distributed grammar systems. Computers and Artificial Intelligence 12(1), 83–88 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Neven, F.: Automata, Logic, and XML. In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Păun, G.: On the generative capacity of hybrid CD grammar systems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.) 30(4), 231–244 (1994)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Rogers, J.: Syntactic structures as multi-dimensional trees. Research on Language & Computation 1, 265–305 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. III. Springer, Berlin (1997)zbMATHGoogle Scholar
  37. 37.
    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences 1, 317–322 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Weir, D.J.: A geometric hierarchy beyond context-free languages. Theoretical Computer Science 104, 235–261 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Henning Fernau
    • 1
  1. 1.FB IV—Abteilung InformatikUniversität TrierTrierGermany

Personalised recommendations