Earley’s Parsing Algorithm and k-Petri Net Controlled Grammars

  • Taishin Y. Nishida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7300)


In this paper we modify Earley’s parsing algorithm to parse words generated by Petri net controlled grammars. Adding a vector which corresponds to a marking of a Petri net to Earley’s algorithm, it is shown that languages generated by a subclass of k-Petri net controlled grammars (introduced by J. Dassow and S. Turaev) are parsed in polynomial time of the length of a word.


Chain Rule Labelling Function Derivation Process Derivation Tree Membership Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ter Beek, M., Kleijn, J.: Petri Net Control for Grammar Systems. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 220–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated rewriting in formal language theory. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dassow, J., Turaev, S.: k-Petri Net Controlled Grammars. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 209–220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Dassow, J., Turaev, S.: Petri net controlled grammars: the case of special Petri nets. Journal of Universal Computer Science 14, 2808–2835 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and final markings. Romanian Journal of Information Science and Technology 12, 191–207 (2009)Google Scholar
  6. 6.
    Dassow, J., Turaev, S.: Petri net controlled grammars with a bounded number of additional places. Acta Cybernetica 19, 609–634 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    David, R., Alla, H.: Petri nets and grafcet: tool for modelling discrete event systems. Prentice Hall, Hertfordshire (1992)zbMATHGoogle Scholar
  8. 8.
    Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM 13, 94–102 (1970)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hopcroft, J.H., Ullman, J.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  10. 10.
    Kasami, T.: An efficient recognition and syntax algorithm for context-free languages, Scientific Report AFCRL-65-758, Air force Cambridge Research Lab., Bedford, Mass (1965)Google Scholar
  11. 11.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Turaev, S.: Petri net controlled grammars. In: Proc. 3rd Doctoral Workshop on MEMICS 2007, Znojmo, Czech Republic, pp. 233–240 (2007)Google Scholar
  14. 14.
    Younger, D.H.: Recognition and parsing of context-free languages in time n3. Information and Control 10, 189–208 (1967)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Taishin Y. Nishida
    • 1
  1. 1.Department of Information SciencesToyama Prefectural UniversityImizuJapan

Personalised recommendations