Advertisement

Peptide Computers

  • M. Sakthi Balan
  • Helmut Jürgensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7300)

Abstract

A peptide computer is a formal model for computations based on peptide-antibody interactions. We provide a rigorous detailed formal model and prove that this model leads to a well-defined computational behaviour. We review existing results concerning the power and limitations of peptide computers and the types of non-determinism arising in such computers on the basis of this formal model.

Keywords

Turing Machine Basic Reaction Critical Pair Boolean Circuit Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A.: Physarum Machines, Computers from Slime Mold, Nonlinear Science, Series A, vol. 74. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  2. 2.
    Balan, M.S., Krithivasan, K.: Modeling Boolean circuits using peptide-antibody interactions. In: Chandra, P., Rathish Kumar, B.V. (eds.) Mathematical Biology, pp. 187–193. Anamaya Publishers, New Delhi (2006), copublished by Anshan Ltd., Tunbridge Wells, UKGoogle Scholar
  3. 3.
    Balan, M.S.: Computational Models Using Peptide-Antibody Interactions. PhD Thesis, Indian Institute of Technology, Madras (2004)Google Scholar
  4. 4.
    Balan, M.S.: Non-determinism in peptide computer. In: Vaszil, G. (ed.) Proceedings of the International Workshop, Automata for Cellular and Molecular Computing, Budapest, Hungary, August 31, pp. 108–119. MTA, SZTAKI, Budapest (2007)Google Scholar
  5. 5.
    Balan, M.S.: A study on automation in peptide computing. In: Abraham, A., Carvalho, A., Herrera, F., Pai, V., Coelho, A., Menezes, R. (eds.) Proceedings of 2009 World Congress on Nature & and Biologically Inspired Computing, NABIC 2009, Coimbatore, India, December 9–11, pp. 128–133. IEEE (2009)Google Scholar
  6. 6.
    Balan, M.S.: Properties of binding-blocking automata: A study. In: Abdullah, R., Khader, A.T., Venkat, I., Wong, L.P., Subramanian, K.G. (eds.) Proceedings, Sixth International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2011, Penang, Malaysia, September 27–29, pp. 211–215. IEEE Computer Society, Los Alamitos (2011)CrossRefGoogle Scholar
  7. 7.
    Balan, M.S., Jürgensen, H.: Peptide Computing – Universality and Theoretical Model. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 57–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Balan, M.S., Jürgensen, H.: On the universality of peptide computing. Nat. Comput. 7, 71–94 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Balan, M.S., Jürgensen, H., Krithivasan, K.: Peptide computing: A survey. In: Krithivasan, K., Rama, R. (eds.) Formal Language Aspects of Natural Computing, Proceedings of Research Level Discussion Meeting on Natural Computing Held at Indian Institute of Technology Madras, Chennai. Ramanujan Mathematical Society Lecture Notes Series, vol. 3, pp. 63–76. Ramanujan Mathematical Society, India (2006)Google Scholar
  10. 10.
    Balan, M.S., Krithivasan, K.: Realizing Switching Functions Using Peptide-Antibody Interactions. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 353–360. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Balan, M.S., Krithivasan, K.: Parallel computation of simple arithmetic using peptide-antibody interactions. BioSystems 76, 303–307 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Balan, M.S., Krithivasan, K., Sivasubramanyam, Y.: Peptide Computing - Universality and Complexity. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Sakthi Balan, M., Seshan, P.: Incremental Building in Peptide Computing to Solve Hamiltonian Path Problem. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 549–560. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Bartha, M., Krész, M.: Soliton circuits and network-based automata: Review and perspectives. In: Martín-Vide, C. (ed.) Scientific Applications of Language Methods, Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory, vol. 2, pp. 585–631. Imperial College Press, London (2011)CrossRefGoogle Scholar
  15. 15.
    Blizard, W.D.: Multiset theory. Notre Dame J. Formal Logic 30, 36–66 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing. Taylor & Francis, London (2001)zbMATHGoogle Scholar
  17. 17.
    Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry, vol. 3. W. H. Freeman, San Francisco (1980)Google Scholar
  18. 18.
    Czeizler, E., Czeizler, E.: On the power of parallel communicating Watson-Crick automata systems. Theoret. Comput. Sci. 358, 142–147 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Czeizler, E., Czeizler, E.: Parallel communicating Watson-Crick automata systems. Acta Cybernet 17, 685–700 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Czeizler, E., Czeizler, E.: A short survey on Watson-Crick automata. Bull. EATCS 88, 104–119 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications. CRC Press, Boca Raton (2009)Google Scholar
  22. 22.
    Dassow, J., Jürgensen, H.: Soliton automata. J. Comput. System Sci. 40, 158–181 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inform. 75, 263–280 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 69, 9–15 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  26. 26.
    Harada, K., Ishida, Y.: Antibody-based computing. Artif. Life Robotics 13, 180–183 (2008)CrossRefGoogle Scholar
  27. 27.
    Head, T.: Biomolecular realizations of a parallel architecture for solving combinatorial problems. New Generation Computing 19, 301–312 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Heyting, A. (ed.): Constructivity in Mathematics, Proceedings of the Colloquium Held at Amsterdam 1957. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1959)zbMATHGoogle Scholar
  29. 29.
    Hoeberechts, M.: On the Foundations of Computability Theory. PhD Thesis, The University of Western Ontario (2009)Google Scholar
  30. 30.
    Hug, H., Schuler, R.: Strategies for the development of a peptide computer. Bioinformatics 17, 364–368 (2001)CrossRefGoogle Scholar
  31. 31.
    Ishida, Y.: Immunity-Based Systems: A Design Perspective. Springer, Berlin (2004)CrossRefGoogle Scholar
  32. 32.
    Ishida, Y., Hayashi, T.: Asymmetric Phenomena of Segregation and Integration in Biological Systems: A Matching Automaton. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part II. LNCS (LNAI), vol. 5712, pp. 789–796. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Ishida, Y., Sasaki, K.: Asymmetric Structure between Two Sets of Adaptive Agents: An Approach Using a Matching Automaton. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part IV. LNCS (LNAI), vol. 6884, pp. 357–365. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Jürgensen, H.: Multisets, bags, families and crowds (2011) (manuscript)Google Scholar
  35. 35.
    Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 511–607. Springer, Berlin (1997)CrossRefGoogle Scholar
  36. 36.
    Kalmár, L.: An argument against the plausibility of Church’s thesis. In: Heyting (ed.) [28], pp. 72–80Google Scholar
  37. 37.
    Knuth, D.E.: Mariages stables et leurs relations avec d’autres problèmes combinatoires: Introduction à l’analyse mathématique des algorithmes. Collection de la Chaire Aisenstadt, Les Presses de l’Université de Montréal, Montréal (1976), English translation: Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms. Translated by M. Goldstein. CRM Proceedings & Lecture Notes, vol. 10. American Mathematical Society, Providence, Rhode Island (1997)Google Scholar
  38. 38.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  39. 39.
    Păun, G.: Membrane Computing. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  40. 40.
    Péter, R.: Rekursivität und Konstruktivität. In: Heyting (ed.) [28], pp. 69–71Google Scholar
  41. 41.
    Rozenberg, G.: Computer science, informatics, and natural computing – personal reflections. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms. Changing Comceptions of What is Computable, pp. 373–379. Springer, New York (2008)Google Scholar
  42. 42.
    Surhone, L.M., Tennoe, M.T., Henssonow, S.F. (eds.): Peptide Computing. Betascript Publishing (August 2010), see footnote 1Google Scholar
  43. 43.
    Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing, Principles and Applications. Springer, New York (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Sakthi Balan
    • 1
  • Helmut Jürgensen
    • 2
  1. 1.ECOM Research Lab, Education and ResearchInfosys LimitedBangaloreIndia
  2. 2.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations