Advertisement

Minimal DFA for Symmetric Difference NFA

  • Brink van der Merwe
  • Hellis Tamm
  • Lynette van Zijl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)

Abstract

Recently, a characterization of the class of nondeterministic finite automata (NFAs) for which determinization results in a minimal deterministic finite automaton (DFA), was given in [2]. We present a similar result for the case of symmetric difference NFAs. Also, we show that determinization of any minimal symmetric difference NFA produces a minimal DFA.

Keywords

Transition Matrice Regular Language Linear Feedback Shift Register Deterministic Finite Automaton Succinct Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite events. In: Proceedings of the Symposium on the Mathematical Theory of Automata. MRI Symposia Series, pp. 529–561. Polytechnic Press of Polytechnic Institute of Brooklyn (1963)Google Scholar
  2. 2.
    Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J., Tamm, H.: Quotient complexities of atoms of regular languages. In: Proceedings of the 16th International Conference on Developments in Language Theory (DLT). Springer (August 2012)Google Scholar
  4. 4.
    Denis, F., Lemay, A., Terlutte, A.: Residual Finite State Automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 144–157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Dornhoff, L., Hohn, F.: Applied Modern Algebra. Macmillan Publishing Company (1978)Google Scholar
  6. 6.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer Publishing Company, Incorporated (2009)Google Scholar
  7. 7.
    Droste, M., Rahonis, G.: Weighted Automata and Weighted Logics on Infinite Words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison Wesley (1979)Google Scholar
  9. 9.
    Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Salomaa Festschrift. LNCS, vol. 3113, pp. 112–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kirsten, D., Mäurer, I.: On the determinization of weighted automata. Journal of Automata, Languages and Combinatorics 10(2/3), 287–312 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  13. 13.
    Stone, H.: Discrete Mathematical Structures. Science Research Associates (1973)Google Scholar
  14. 14.
    van der Merwe, B., van Zijl, L., Geldenhuys, J.: Ambiguity of Unary Symmetric Difference NFAs. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 256–266. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Van Zijl, L.: Generalized Nondeterminism and the Succinct Representation of Regular Languages. Ph.D. thesis, Stellenbosch University (November 1997)Google Scholar
  16. 16.
    Van Zijl, L.: On binary symmetric difference NFAs and succinct representations of regular languages. Theoretical Computer Science 328(1), 161–170 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Vuillemin, J., Gama, N.: Compact Normal Form for Regular Languages as Xor Automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brink van der Merwe
    • 1
  • Hellis Tamm
    • 2
  • Lynette van Zijl
    • 1
  1. 1.Department of Computer ScienceStellenbosch UniversityMatielandSouth Africa
  2. 2.Institute of CyberneticsTallinn University of TechnologyTallinnEstonia

Personalised recommendations