Advertisement

Iterating Invertible Binary Transducers

  • Klaus Sutner
  • Kevin Lewi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)

Abstract

We study iterated transductions defined by a class of invertible transducers over the binary alphabet. The transduction semigroups of these automata turn out to be free Abelian groups and the orbits of finite words can be described as affine subspaces in a suitable geometry defined by the generators of these groups. We show that iterated transductions are rational for a subclass of our automata.

Keywords

Wreath Product Free Abelian Group Orbit Relation Complete Binary Tree Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholdi, L., Silva, P.V.: Groups defined by automata. CoRR, abs/1012.1531 (2010)Google Scholar
  2. 2.
    Berstel, J.: Transductions and context-free languages (2009), http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
  3. 3.
    Brzozowski, J.A.: Derivatives of regular expressions. Journal Assoc. for Comp. Machinery 11 (1964)Google Scholar
  4. 4.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press (1974)Google Scholar
  5. 5.
    Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9, 47–68 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Patterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett (1992)Google Scholar
  7. 7.
    Gluškov, V.M.: Abstract theory of automata. Uspehi Mat. Nauk 16(5(101)), 3–62 (1961)Google Scholar
  8. 8.
    Gouvêa, F.Q.: p-Adic Numbers: An Introduction, 2nd edn. Springer (1997)Google Scholar
  9. 9.
    Grigorchuk, R.R., Nekrashevich, V.V., Sushchanski, V.I.: Automata, dynamical systems and groups. Proc. Steklov Institute of Math. 231, 128–203 (2000)Google Scholar
  10. 10.
    Kharlampovich, O., Khoussainov, B.: A Miasnikov. From automatic structures to automatic groups. ArXiv e-prints (July 2011)Google Scholar
  11. 11.
    Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Khoussainov, B., Nerode, A.: Automata Theory and its Applications. Birkhäuser (2001)Google Scholar
  13. 13.
    Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions. J. Autom. Lang. Comb. 8(2), 287–301 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Knuth, D.: Private communication (2010)Google Scholar
  15. 15.
    Nekrashevych, V.: Self-Similar Groups. Math. Surveys and Monographs, vol. 117. AMS (2005)Google Scholar
  16. 16.
    Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms. Cambridge University Press (2004)Google Scholar
  17. 17.
    Raney, G.N.: Sequential functions. J. Assoc. Comp. Mach. 5(2), 177–180 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  19. 19.
    Serre, J.-P.: Arbres, Amalgames, SL 2. Number 46 in Astérisque. Société Mathématique de France, Paris (1977)Google Scholar
  20. 20.
    Sidki, S.: Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity. J. Math. Sciences 100(1), 1925–1943 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sutner, K., Devanny, W.: Timestamps in iterated invertible transducers (in preparation, 2012)Google Scholar
  22. 22.
    Vuillemin, J.: On circuits and numbers. IEEE Transactions on Computers 43, 868–879 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Klaus Sutner
    • 1
  • Kevin Lewi
    • 2
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations