Bounded Counter Languages

  • Holger Petersen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)


We show that deterministic finite automata equipped with k two-way heads are equivalent to deterministic machines with a single two-way input head and k − 1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of \(a_1^*a_2^*\cdots a_m^*\) for a fixed sequence of symbols a 1, a 2,…, a m . Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters.


Turing Machine Kolmogorov Complexity Input String Input Symbol Input Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Amram, A.M., Christensen, N.H., Simonsen, J.G.: Computational models with no linear speedup, Typescript (2011)Google Scholar
  2. 2.
    Ďuriš, P., Galil, Z.: Fooling a two way automaton or one pushdown store is better than one counter for two way machines. Theoretical Computer Science 21, 39–53 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16, 109–114 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter languages. Mathematical Systems Theory 2, 265–283 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Greibach, S.A.: Remarks on the complexity of nondeterministic counter languages. Theoretical Computer Science 1, 269–288 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hühne, M.: Linear speed-up does not hold on Turing machines with tree storages. Information Processing Letters 47, 313–318 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer (1993)Google Scholar
  8. 8.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics 74, 437–455 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Monien, B.: Two-way multihead automata over a one-letter alphabet. R.A.I.R.O. — Informatique Théorique et Applications 14, 67–82 (1980)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Morita, K., Sugata, K., Umeo, H.: Computation complexity of n-bounded counter automaton and multidimensional rebound automaton. Systems Computers Controls 8, 80–87 (1977); Translated from Denshi Tsushin Gakkai Ronbunshi (IEICE of Japan Trans.) 60-D, 283–290 (1977) (Japanese)Google Scholar
  11. 11.
    Morita, K., Sugata, K., Umeo, H.: Computational complexity of n-bounded counter automaton and multi-dimensional rebound automaton. IEICE of Japan Trans. 60-E, 226–227 (1977); Abstract of [10]Google Scholar
  12. 12.
    Petersen, H.: Simulations by time-bounded counter machines. International Journal of Foundations of Computer Science 22, 395–409 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ritchie, R.W., Springsteel, F.N.: Language recognition by marking automata. Information and Control 20, 313–330 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cem Say, A.C., Yakaryilmaz, A.: Quantum counter automata (2011) (submitted for publication)Google Scholar
  15. 15.
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson (2006)Google Scholar
  16. 16.
    Sugata, K., Morita, K., Umeo, H.: The language accepted by an n-bounded multicounter automaton and its computing ability. Systems Computers Controls 8, 71–79 (1977); Translated from Denshi Tsushin Gakkai Ronbunshi (IEICE of Japan Trans.) 60-D, 275–282 (1977) (Japanese)Google Scholar
  17. 17.
    Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter automata. Theoretical Computer Science 334, 275–297 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Holger Petersen
    • 1
  1. 1.StuttgartGermany

Personalised recommendations