Advertisement

Abstract

This is a talk on minicomplexity, namely on the complexity of two-way finite automata. We start with a smooth introduction to its basic concepts, which also brings together several seemingly detached, old theorems. We then record recent advances, both in the theory itself and in its relation to Turing machine complexity. Finally, we illustrate a proof technique, which we call hardness propagation by certificates. The entire talk follows, extends, and advocates the Sakoda-Sipser framework.

Keywords

State Component Relational Match Relational Path Size Complexity Strong Conjecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, B.H.: A two-way automaton with fewer states than any equivalent one-way automaton. IEEE Transactions on Computers C-20(4), 474–475 (1971)CrossRefGoogle Scholar
  2. 2.
    Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)Google Scholar
  3. 3.
    Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathematical Systems Theory 29, 191–226 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Geffert, V.: An alternating hierarchy for finite automata. Theoretical Computer Science (to appear)Google Scholar
  5. 5.
    Geffert, V., Guillon, B., Pighizzini, G.: Two-Way Automata Making Choices Only at the Endmarkers. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 264–276. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295, 189–203 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173–1187 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hromkovič, J., Schnitger, G.: Nondeterminism Versus Determinism for Two-Way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kapoutsis, C.A.: Nondeterminism is essential in small two-way finite automata with few reversals. Information and Computation (to appear)Google Scholar
  10. 10.
    Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kapoutsis, C.A.: Algorithms and lower bounds in finite automata size complexity. Phd thesis, Massachusetts Institute of Technology (June 2006)Google Scholar
  12. 12.
    Kapoutsis, C.A.: Small Sweeping 2NFAs Are Not Closed Under Complement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 144–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kapoutsis, C.A.: Deterministic moles cannot solve liveness. Journal of Automata, Languages and Combinatorics 12(1-2), 215–235 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kapoutsis, C.A.: Two-Way Automata versus Logarithmic Space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kapoutsis, C.A., Královič, R., Mömke, T.: On the Size Complexity of Rotating and Sweeping Automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 455–466. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kapoutsis, C.A., Lefebvre, N.: Analogs of Fagin’s Theorem for small nondeterministic finite automata. In: Proceedings of DLT (to appear, 2012)Google Scholar
  18. 18.
    Kapoutsis, C.A., Pighizzini, G.: Reversal hierarchies for small 2DFAs (submitted)Google Scholar
  19. 19.
    Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL. In: Proceedings of CSR, pp. 222–233 (2012)Google Scholar
  20. 20.
    Kozen, D.C.: Automata and computability. Springer (1997)Google Scholar
  21. 21.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)Google Scholar
  22. 22.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers 20(10), 1211–1214 (1971)zbMATHCrossRefGoogle Scholar
  23. 23.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)Google Scholar
  25. 25.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4, 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Seiferas, J.I.: Untitled (October 1973), manuscriptGoogle Scholar
  27. 27.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM Journal of Research and Development 3, 198–200 (1959)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10, 335–338 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Sipser, M.: Introduction to the theory of computation. Thomson Course Technology, 2nd edn. (2006)Google Scholar
  31. 31.
    Szepietowski, A.: If deterministic and nondeterministic space complexities are equal for loglogn then they are also equal for logn. In: Proceedings of STACS, pp. 251–255 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christos A. Kapoutsis
    • 1
  1. 1.LIAFAUniversité Paris VIIFrance

Personalised recommendations