Advertisement

On Internal Contextual Grammars with Subregular Selection Languages

  • Florin Manea
  • Bianca Truthe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)

Abstract

In this paper, we study the power of internal contextual grammars with selection languages from subfamilies of the family of regular languages. If we consider families \({\cal F}_n\) which are obtained by restriction to n states or nonterminals or productions or symbols to accept or to generate regular languages, we obtain four infinite hierarchies of the corresponding families of languages generated by internal contextual grammars with selection languages in \({\cal F}_n\).

Keywords

Regular Language Empty Word Derivation Step Nonterminal Symbol Proper Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dassow, J.: Contextual grammars with subregular choice. Fundamenta Informaticae 64(1-4), 109–118 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Dassow, J., Manea, F., Truthe, B.: On Contextual Grammars with Subregular Selection Languages. In: Holzer, M., Kutrib, M., Pighizzini, g. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 135–146. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Istrail, S.: Gramatici contextuale cu selectiva regulata. Stud. Cerc. Mat. 30, 287–294 (1978)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Marcus, S.: Contextual grammars. Revue Roum. Math. Pures Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  5. 5.
    Păun, G.: Marcus Contextual Grammars. Kluwer Publ. House, Dordrecht (1998)Google Scholar
  6. 6.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florin Manea
    • 1
  • Bianca Truthe
    • 2
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations