State Complexity of Chop Operations on Unary and Finite Languages

  • Markus Holzer
  • Sebastian Jakobi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)


We continue our research on the descriptional complexity of chop operations. Informally, the chop of two words is like their concatenation with the touching letters merged if they are equal, otherwise their chop is undefined. The iterated variants chop-star and chop-plus are defined similar as the classical operations Kleene star and plus. We investigate the state complexity of chop operations on unary and/or finite languages, and obtain similar bounds as for the classical operations.


Transition Function State Complexity Regular Language Reachable State Sink State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babu, S.A., Pandya, P.K.: Chop expressions and discrete duration calculus. In: Modern Applications of Automata Theory. IISc research Monographs Series, vol. 2. World Scientific (2010)Google Scholar
  2. 2.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cărăuşu, A., Păun, G.: String intersection and short concatenation. Rev. Roumaine Math. Pures Appl. 26, 713–726 (1981)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Domaratzki, M.: Minimality in Template-Guided Recombination. Inform. Comput. 270, 1209–1220 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Holzer, M., Jakobi, S.: Chop Operations and Expressions: Descriptional Complexity Considerations. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 264–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Holzer, M., Jakobi, S., Kutrib, M.: The chop of languages. In: Automata and Formal Languages (AFL), Debrecen, Hungary, pp. 197–210 (2011)Google Scholar
  9. 9.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ito, M., Lischke, G.: Generalized periodicity and primitivity. Math. Logic Q. 53, 91–106 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Dokl. 11, 1373–1375 (1970)zbMATHGoogle Scholar
  13. 13.
    Mateescu, A., Salomaa, A.: Parallel composition of words with re-entrant symbols. Analele Universitǎţii Bucureşti Matematicǎ-Informaticǎ 45, 71–80 (1996)MathSciNetGoogle Scholar
  14. 14.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Holzer
    • 1
  • Sebastian Jakobi
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations