An Efficient Method for Solving UNSAT 3-SAT and Similar Instances via Static Decomposition

(Poster Presentation)
  • Emir Demirović
  • Haris Gavranović
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)


We present work that we have done so far towards devising a method for solving a specific case of SAT problems: UNSAT 3-SAT. Our goal is not to improve general SAT solving, but to focus on improving current techniques to solve 3- SAT and instances which have 2-SAT and 3-SAT structures within them. We have restricted ourselves to UNSAT instances. Even with these restrictions, these types of instances are still important, as such occur in practice (e.g. Velev’s hardware verification instances [5]).


  1. 1.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gil, L., Flores, P., Silveira, L.M.: PMSat: a parallel version of minisat. Journal on Satisfiability, Boolean Modeling and Computation 6, 71–98 (2008)MathSciNetGoogle Scholar
  4. 4.
    Moskewicz, W.M., Madigan, F.C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001. ACM, New York (2001)Google Scholar
  5. 5.
    Miroslav Velev’s SAT Benchmarks,
  6. 6.
    Kullmann, O.: Fundaments of Branching Heuristics. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press (February 2009)Google Scholar
  7. 7.
    Heule, M., van Maaren, H.: Look-Ahead Based SAT Solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press (February 2009)Google Scholar
  8. 8.
    Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: IJCAI 2001 Proceedings of the 17th International Joint Conference on Artificial Intelligence, vol. 1, pp. 971–978. Morgan Kaufmann Publishers Inc, San Francisco (2001) ISBN:1-55860-812-5 978-1-558-60812-2Google Scholar
  9. 9.
    Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: A Distribution Method for Solving SAT in Grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. In: 7th Intl. Haifa Verification Conference (HVC 2011), Haifa, Israel (December 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emir Demirović
    • 1
  • Haris Gavranović
    • 2
  1. 1.Department of MathematicsFaculty of Natural SciencesSarajevoBosnia and Herzegovina
  2. 2.BAO labSarajevoBosnia and Herzegovina

Personalised recommendations