Concurrent Cube-and-Conquer

(Poster Presentation)
  • Peter van der Tak
  • Marijn J. H. Heule
  • Armin Biere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)

Abstract

Satisfiability solvers targeting industrial instances are currently almost always based on conflict-driven clause learning (CDCL) [5]. This technique can successfully solve very large instances. Yet on small, hard problems lookahead solvers [3] often perform better by applying much more reasoning in each search node and then recursively splitting the search space until a solution is found.

References

  1. 1.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)Google Scholar
  2. 2.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS 89(4), 543–560 (2003)Google Scholar
  3. 3.
    Heule, M.J.H.: SmArT Solving: Tools and techniques for satisfiability solvers. PhD thesis, Delft University of Technology (2008)Google Scholar
  4. 4.
    Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL SAT solvers by lookaheads, Accepted for HVC (2011)Google Scholar
  5. 5.
    Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. FAIA, vol. 185, ch. 4, pp. 131–153. IOS Press (February 2009)Google Scholar
  6. 6.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter van der Tak
    • 1
  • Marijn J. H. Heule
    • 1
    • 2
  • Armin Biere
    • 3
  1. 1.Delft University of TechnologyThe Netherlands
  2. 2.University of TexasAustinUnited States
  3. 3.Johannes Kepler UniversityLinzAustria

Personalised recommendations