Advertisement

Off the Trail: Re-examining the CDCL Algorithm

  • Alexandra Goultiaeva
  • Fahiem Bacchus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)

Abstract

Most state of the art SAT solvers for industrial problems are based on the Conflict Driven Clause Learning (CDCL) paradigm. Although this paradigm evolved from the systematic DPLL search algorithm, modern techniques of far backtracking and restarts make CDCL solvers non-systematic. CDCL solvers do not systematically examine all possible truth assignments as does DPLL.

Local search solvers are also non-systematic and in this paper we show that CDCL can be reformulated as a local search algorithm: a local search algorithm that through clause learning is able to prove UNSAT. We show that the standard formulation of CDCL as a backtracking search algorithm and our new formulation of CDCL as a local search algorithm are equivalent, up to tie breaking.

In the new formulation of CDCL as local search, the trail no longer plays a central role in the algorithm. Instead, the ordering of the literals on the trail is only a mechanism for efficiently controlling clause learning. This changes the paradigm and opens up avenues for further research and algorithm design. For example, in QBF the quantifier places restrictions on the ordering of variables on the trail. By making the trail less important, an extension of our local search algorithm to QBF may provide a way of reducing the impact of these variable ordering restrictions.

Keywords

Local Search Local Search Algorithm Decision Level Complete Assignment Implication Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audemard, G., Lagniez, J.-M., Mazure, B., Sais, L.: Learning in local search. In: ICTAI, pp. 417–424 (2009)Google Scholar
  2. 2.
    Belov, A., Stachniak, Z.: Improved Local Search for Circuit Satisfiability. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 293–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Adaptive Restart Strategies for Conflict Driven SAT Solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fang, H.: Complete local search for propositional satisfiability. In: Proceedings of AAAI, pp. 161–166 (2004)Google Scholar
  6. 6.
    Gableske, O., Heule, M.J.H.: EagleUP: Solving Random 3-SAT Using SLS with Unit Propagation. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 367–368. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gomes, C.P., Selman, B., Crato, N.: Heavy-Tailed Distributions in Combinatorial Search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Hirsch, E.A., Kojevnikov, A.: Unitwalk: A new sat solver that uses local search guided by unit clause elimination. Ann. Math. Artif. Intell. 43(1), 91–111 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Huang, J.: A Case for Simple SAT Solvers. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 839–846. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical Study of the Anatomy of Modern Sat Solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lonsing, F., Biere, A.: Depqbf: A dependency-aware qbf solver. JSAT 7(2-3), 71–76 (2010)Google Scholar
  12. 12.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: 10th International Conference on Theory and Applications of Satisfiability Testing, pp. 294–299 (2007)Google Scholar
  13. 13.
    Pipatsrisawat, K., Darwiche, A.: On the Power of Clause-Learning SAT Solvers with Restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Ramos, A., van der Tak, P., Heule, M.J.H.: Between Restarts and Backjumps. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 216–229. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Selman, B., Kautz, H., Cohen, B.: Local Search Strategies for Satisfiability Testing. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 521–532. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandra Goultiaeva
    • 1
  • Fahiem Bacchus
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoCanada

Personalised recommendations