Advertisement

Choosing Probability Distributions for Stochastic Local Search and the Role of Make versus Break

  • Adrian Balint
  • Uwe Schöning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)

Abstract

Stochastic local search solvers for SAT made a large progress with the introduction of probability distributions like the ones used by the SAT Competition 2011 winners Sparrow2010 and EagleUp. These solvers though used a relatively complex decision heuristic, where probability distributions played a marginal role.

In this paper we analyze a pure and simple probability distribution based solver probSAT, which is probably one of the simplest SLS solvers ever presented. We analyze different functions for the probability distribution for selecting the next flip variable with respect to the performance of the solver. Further we also analyze the role of make and break within the definition of these probability distributions and show that the general definition of the score improvement by flipping a variable, as make minus break is questionable. By empirical evaluations we show that the performance of our new algorithm exceeds that of the SAT Competition winners by orders of magnitude.

Keywords

Stochastic Local Search Random Walk Algorithm Satisfying Truth Assignment Variable Selection Heuristic Propagation Algorithm Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balint, A., Diepold, D., Gall, D., Gerber, S., Kapler, G., Retz, R.: EDACC - An Advanced Platform for the Experiment Design, Administration and Analysis of Empirical Algorithms. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 586–599. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Lingeling and Friends at the SAT Competition 2011. Tehnical report 11/1, FMV Reports Series (2011), http://fmv.jku.at/papers/Biere-FMV-TR-11-1.pdf
  4. 4.
    bwGRiD, member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg), http://www.bw-grid.de
  5. 5.
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Bartz-Beielstein, T., et al. (eds.) Empirical Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI 2002, pp. 635–660 (2002)Google Scholar
  7. 7.
    Kroc, L., Sabharwal, A., Selman, B.: An Empirical Study of Optimal Noise and Runtime Distributions in Local Search. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Li, C.-M., Huang, W.Q.: Diversification and Determinism in Local Search for Satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Proc. Letters 47, 173–180 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    McAllester, D., Selman, B., Kautz, H.: Evidence for invariant in local search. In: Proceedings of AAAI 1997, pp. 321–326 (1997)Google Scholar
  11. 11.
    Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings FOCS 1991, pp. 163–169. IEEE (1991)Google Scholar
  12. 12.
    Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings FOCS 1991, pp. 410–414. IEEE (1999)Google Scholar
  13. 13.
    Schöning, U.: Principles of Stochastic Local Search. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 178–187. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability. arXiv:cond-mat/051707v1 (2005)Google Scholar
  15. 15.
    Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    The SAT Competition Homepage, http://www.satcompetition.org
  17. 17.
    Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adrian Balint
    • 1
  • Uwe Schöning
    • 1
  1. 1.Institute of Theoretical Computer ScienceUlm UniversityUlmGermany

Personalised recommendations