Henkin Quantifiers and Boolean Formulae

  • Valeriy Balabanov
  • Hui-Ju Katherine Chiang
  • Jie-Hong Roland Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)


Henkin quantifiers, when applied on Boolean formulae, yielding the so-called dependency quantified Boolean formulae (DQBF), offer succinct descriptive power specifying variable dependencies. Despite their natural applications to games with incomplete information, logic synthesis with constrained input dependencies, etc., DQBF remain a relatively unexplored subject however. This paper investigates their basic properties, including formula negation and complement, formula expansion, and prenex and non-prenex form conversions. In particular, the proposed DQBF formulation is established from a synthesis perspective concerned with Skolem-function models and Herbrand-function countermodels.


Logic Formula Winning Strategy Truth Assignment Boolean Formula Formula Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Blass, A., Gurevich, Y.: Henkin quantifiers and complete problems. Annals of Pure and Applied Logic 32, 1–16 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. In: Formal Methods in System Design (2012)Google Scholar
  4. 4.
    Bubeck, U., Kleine Büning, H.: Dependency Quantified Horn Formulas: Models and Complexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bubeck, U.: Model-based Transformations for Quantified Boolean Formulas. IOS Press (2010)Google Scholar
  6. 6.
    Caicedo, X., Dechesne, F., Janssen, T.: Equivalence and quanftifier rules for logic with imperfect information. Logic Journal of the IGPL 17(1), 91–129 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dechesne, F.: Game, Set, Maths: Formal Investigations into Logic with Imperfect Information. PhD thesis, Tilburg University (2005)Google Scholar
  8. 8.
    Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean relations. In: Proc. Int’l Conf. on Computer-Aided Design (ICCAD), pp. 770–784 (2009)Google Scholar
  9. 9.
    Henkin, L.: Some remarks on infinitely long formulas. Infinitistic Methods, 167–183 (1961)Google Scholar
  10. 10.
    Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. In: Logic, Methodology and Philosophy of Science, pp. 571–589 (1989)Google Scholar
  11. 11.
    Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative games of imcomplete information. Computers and Mathematics with Applications 41(7-8), 957–992 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Peters, S., Westerstahl, D.: Quantifiers in Language and Logic. Oxford University Press (2006)Google Scholar
  13. 13.
    Skolem, T.: Uber die mathematische Logik. Norsk. Mat. Tidsk. 10, 125–142 (1928); Translation in From Frege to Gödel, A Source Book in Mathematical Logic, J. van Heijenoort. Harvard Univ. Press (1967)Google Scholar
  14. 14.
    Sinha, S., Mishchenko, A., Brayton, R.K.: Topologically constrained logic synthesis. In: Proc. Int’l Conf. on Computer-Aided Design (ICCAD), pp. 679–686 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Valeriy Balabanov
    • 1
  • Hui-Ju Katherine Chiang
    • 1
  • Jie-Hong Roland Jiang
    • 1
  1. 1.Department of Electrical Engineering / Graduate Institute of Electronics EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations