Advertisement

Abstract

Food allergens can trigger the immune system of predisposed individuals towards the development of food allergy symptoms. However, the whole allergen is not involved in the immune response; only its epitopes, which are recognized by a T-cell receptor or an IgE-antibody, contribute to allergic reactions. Thus, identification and characterization of food allergen epitopes can help to better understand food allergies. Historically, linear or continuous and conformational or discontinuous epitopes are defined as two types of epitopes. The terms T-cell epitopes or B-cell epitopes are frequently used. Due to the application of advanced molecular technologies in immunology, food allergen epitopes can be identified and characterized, which can play an important role in the prediction of allergenicity, the definition of cross-reactivity, allergy diagnosis and immuno- therapy. Currently, B-cell epitope mapping is carried out by using enzymatic and chemical cleavage, production of synthetic peptides in various formats, structure resolution via NMR and X-ray crystal diffraction, biological chip technology and by the application of predictive algorithms. Identification of T-cell epitopes and their mapping on the allergen can be achieved by using proliferation assays, flow cytometry, and enzyme-linked immunospot (ELISPOT) assays. Nevertheless, investigations into the role of food allergen epitopes are ongoing, in particular with regard to the conformational epitopes.

Keywords

Food Aller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, M., Kühne, Y., Ballmer-Weber, B.K., et al. (2009). Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J Allergy Clin Immunol, 124(2), 328–336.PubMedCrossRefGoogle Scholar
  2. Alcocer, M.J.C., Murtagh, G.J., Wilson, P.B., et al. (2004). The major human structural IgE epitope of the Brazil nut allergen Ber e 1: A chimaeric and protein microarray approach. J Mol Biol, 343(3), 759–769.PubMedCrossRefGoogle Scholar
  3. Anderson, R.P., Van Heel, D.A., Tye-Din, J.A., et al. (2006). Antagonists and non-toxic variants of the dominant wheat gliadin T-cell epitope in coeliac disease. Gut, 55(4), 485–491.PubMedCrossRefGoogle Scholar
  4. Anthony, D.D., Lehmann, P.V. (2003). T-cell epitope mapping using the ELISPOT approach. Methods, 29(3), 260–269.PubMedCrossRefGoogle Scholar
  5. Bannon, G.A. (2004). What makes a food protein an allergen? Current Allergy and Asthma Reports, 4(1), 43–46.PubMedCrossRefGoogle Scholar
  6. Bannon, G.A., Ogawa, T. (2006). Evaluation of available IgE-binding epitope data and its utility in bioinformatics. Mol Nutrition Food Res, 50(7), 638–644.CrossRefGoogle Scholar
  7. Barlow, D.J., Edwards, M.S., Thornton, J.M. (1986). Continuous and discontinuous protein antigenic determinants. Nature, 322 (6081), 747–748.PubMedCrossRefGoogle Scholar
  8. Bohle, B. (2006). T-cell epitopes of food allergens. Clinical Reviews Allergy Immunol, 30(2), 97–108.CrossRefGoogle Scholar
  9. Böttger, V., Böttger, A. (2009). Epitope mapping using phage display peptide libraries. Methods Mol Biol (Clifton, N.J.), 524, 181–201.CrossRefGoogle Scholar
  10. Bonds, R.S., Midoro-Horiuti, T., Goldblum, R. (2008). A structural basis for food allergy: The role of cross-reactivity. Current Opinion Allergy Clin Immunol, 8(1), 82–86.CrossRefGoogle Scholar
  11. Breiteneder, H., Mills, E.N.C. (2005). Plant food allergens-Structural and functional aspects of allergenicity. Biotechnology Advances, 23(6), 395–399.PubMedCrossRefGoogle Scholar
  12. Burks, W., Kulis, M., Pons, L. (2008). Food allergies and hypersensitivity: A review of pharmacotherapy and therapeutic strategies. Expert Opinion on Pharmacotherapy, 9(7), 1145–1152.PubMedCrossRefGoogle Scholar
  13. Cerecedo, I., Zamora, J., Shreffler, W.G., et al. (2008). Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay. J Allergy Clin Immunol, 122(3), 589–594.PubMedCrossRefGoogle Scholar
  14. Cwirla, S.E., Peters, E.A., Barrett, R.W., et al. (1990). Peptides on phage: A vast library of peptides for identifying ligands. PNAS, 87(16), 6378–6382.PubMedCrossRefGoogle Scholar
  15. Elsayed, S., Apold, J. (1977). Allergenic structure of allergen M from cod. II. Allergenicity of the limited tryptic hydrolysis peptides of fragment TM2. Int Arch Allergy Appl Immunol, 54(2), 171–175.PubMedCrossRefGoogle Scholar
  16. Elsayed, S., Apold, J., Aas, K., et al. (1976). The allergenic structure of allergen M from cod. I. Tryptic peptides of fragment TM 1. Int Arch Allergy Appl Immunol, 52(1–4), 59–63.CrossRefGoogle Scholar
  17. Elsayed, S., Eriksen, J., Øysæd, L.K., et al. (2004). T-cell recognition pattern of bovine milk αS1-casein and its peptides. Mol Immunol, 41(12), 1225–1234.PubMedCrossRefGoogle Scholar
  18. Frank, R. (2002). The SPOT-synthesis technique: Synthetic peptide arrays on membrane supports-Principles and applications. J Immunol Methods, 267(1), 13–26.PubMedCrossRefGoogle Scholar
  19. Geysen, H.M., Tainer, J.A., Rodda, S.J. (1987). Chemistry of antibody binding to a protein. Science, 235(4793), 1184–1190.PubMedCrossRefGoogle Scholar
  20. Goodman, R.E., Silvanovich, A., Hileman, R.E., et al. (2002). Bioinformatic methods for identifying known or potential allergens in the safety assessment of genetically modified crops. Comments on Toxicology, 8(3), 251–269.CrossRefGoogle Scholar
  21. Hamilton, R.G., Franklin, A. N. Jr. (2004). In vitro assays for the diagnosis of IgE-mediated disorders. J Allergy Clin Immunol, 114(2), 213–225.PubMedCrossRefGoogle Scholar
  22. Harrer, A., Egger, M., Gadermaier, G., et al. (2010). Characterization of plant food allergens: An overview on physicochemical and immunological techniques. Molecular Nutrition and Food Research, 54(1), 93–112.PubMedCrossRefGoogle Scholar
  23. Hiller, R., Laffer, S., Harwanegg, C., et al. (2002). Microarrayed allergen molecules: Diagnostic gatekeepers for allergy treatment. The FASEB journal: Official publication of the Federation of American Societies for Experimental Biology, 16(3), 414–416.Google Scholar
  24. Jaärvinen, K. M., Chatchatee, P., Bardina, L., et al. (2001). IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy. International Archives of Allergy and Immunology, 126(2), 111–118.CrossRefGoogle Scholar
  25. Kern, F., Surel, I.P., Brock, C., et al. (1998). T-cell epitope mapping by flow cytometry. Nature Med, 4(8), 975–976.PubMedCrossRefGoogle Scholar
  26. Kondo, M., Suzuki, K., Inoue, R., et al. (2005). Characterization of T-cell clones specific to Ovomucoid from patients with egg-white allergy. Journal of Investigational Allergology and Clin Immunol, 15(2), 107–111.Google Scholar
  27. Li, M., Gustchina, A., Alexandratos, J., et al. (2008). Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Bio Chem, 283(33), 22806–22814.CrossRefGoogle Scholar
  28. Lin, J., Bardina, L., Shreffler, W.G., et al. (2009). Development of a novel peptide microarray for large-scale epitope mapping of food allergens. J Allergy Clin Immunol, 124(2), 315–322.PubMedCrossRefGoogle Scholar
  29. Lin, J., Sampson, H.A. (2009). The role of immunoglobulin E-binding epitopes in the characterization of food allergy. Current Opinion Allergy Clin Immunol, 9(4), 357–363.CrossRefGoogle Scholar
  30. Malherbe, L. (2009). T-cell epitope mapping. Annals of Allergy, Asthma Immunol, 103(1), 76–79.CrossRefGoogle Scholar
  31. Mazzoni, M.R., Porchia, F., Hamm, H.E. (2009). Proteolytic fragmentation for epitope mapping. Methods in Molecular Biology (Clifton, N.J.), 524, 77–86.CrossRefGoogle Scholar
  32. Mine, Y., Rupa, P. (2003). Fine mapping and structural analysis of immunodominant IgE allergenic epitopes in chicken egg ovalbumin. Protein Engineering, 16(10), 747–752.PubMedCrossRefGoogle Scholar
  33. Mohapatra, S.S., Lockey, R.F. (2001). Molecular characterization of allergens. Clinical Reviews in Allergy and Immunology, 21(2–3), 203–213.CrossRefGoogle Scholar
  34. Mueller, G.A., Smith, A.M., Chapman, M.D., et al. (2001). Hydrogen Exchange Nuclear Magnetic Resonance Spectroscopy Mapping of Antibody Epitopes on the House Dust Mite Allergen Der p 2. J Bio Chem, 276(12), 9359–9365.CrossRefGoogle Scholar
  35. Nahtman, T., Jernberg, A., Mahdavifar, S., et al. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods, 328(1–2), 1–3.CrossRefGoogle Scholar
  36. Niemi, M., Jylhaä, S., Laukkanen, M. L., et al. (2007). Molecular Interactions between a Recombinant IgE Antibody and the β-Lactoglobulin Allergen. Structure, 15(11), 1413–1421.PubMedCrossRefGoogle Scholar
  37. Oezguen, N., Zhou, B., Negi, S.S. (2008). Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes. Molecular Immunology, 45(14), 3740–3747.PubMedCrossRefGoogle Scholar
  38. Osman, A.A., Uhlig, H.H., Valdes, I., et al. (2001). A monoclonal antibody that recognizes a potential coeliac-toxic repetitive pentapeptide epitope in gliadins. European Journal of Gastroenterology and Hepatology, 13(10), 1189–1193.PubMedCrossRefGoogle Scholar
  39. Pacios, L.F., Tordesillas, L., Cuesta-Herranz, J., et al. (2008). Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: Peach Pru p 3 allergen as a model. Mol Immunol, 45(8), 2269–2276.PubMedCrossRefGoogle Scholar
  40. Padavattan, S., Schirmer, T., Schmidt, M., et al. (2007). Identification of a B-cell Epitope of Hyaluronidase, a Major Bee Venom Allergen, from its Crystal Structure in Complex with a Specific Fab. J Mol Biol, 368(3), 742–752.PubMedCrossRefGoogle Scholar
  41. Padavattan, S., Flicker, S., Schirmer, T., et al. (2009). High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by x-ray crystallography. J Immunol, 182(4), 2141–2151.PubMedCrossRefGoogle Scholar
  42. Padlan, E.A., Silverton, E.W., Sheriff, S., et al. (1989). Structure of an antibody-antigen complex: Crystal structure of the HyHEL-10 Fab-lysozyme complex. PNAS, 86(15), 5938–5942.PubMedCrossRefGoogle Scholar
  43. Pellequer, J. L., Westhof, E., van Regenmortel, M.H.V. (1993). Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunology Letters, 36(1), 83–99.PubMedCrossRefGoogle Scholar
  44. Pomés, A. (2009). Relevant B Cell Epitopes in Allergic Disease. Int Arch Allergy Immunol, 152(1), 1–11.PubMedCrossRefGoogle Scholar
  45. Provenzano, M., Spagnoli, G.C. (2009). T-cell epitope-mapping by cytokine gene expression assay. Methods in Molecular Biology (Clifton, N.J.), 514, 107–118.CrossRefGoogle Scholar
  46. Rabjohn, P., Helm, E.M., Stanley, J.S., et al. (1999). Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Investigation, 103(4), 535–542.CrossRefGoogle Scholar
  47. Reineke, U. (2009). Antibody epitope mapping using de novo generated synthetic peptide libraries. Methods in Molecular Biology (Clifton, N.J.), 524, 203–211.CrossRefGoogle Scholar
  48. Rosen, O., Anglister, J. (2009). Epitope mapping of antibody-antigen complexes by nuclear magnetic resonance spectroscopy. Methods in Molecular Biology (Clifton, N.J.), 524, 37–57.CrossRefGoogle Scholar
  49. Sankian, M., Varasteh, A., Pazouki, N., et al. (2005). Sequence homology: A poor predictive value for profilins cross-reactivity. Clin Mol Allergy, 3, 13.PubMedCrossRefGoogle Scholar
  50. Schulten, V., Radakovics, A., Hartz, C., et al. (2009). Characterization of the allergic T-cell response to Pru p 3, the nonspecific lipid transfer protein in peach. J Allergy Clin Immunol, 124(1), 100–107.PubMedCrossRefGoogle Scholar
  51. Shreffler, W.G., Beyer, K., Chu, T. H.T., et al. (2004). Microarray immunoassay: Association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol, 113(4), 776–782.PubMedCrossRefGoogle Scholar
  52. Sicherer, S.H., Sampson, H.A. (2010). Food allergy. J Allergy Clin Immunol, 125 (supple 2), S116–S125.Google Scholar
  53. Spaenij-Dekking, E.H.A., Kooy-Winkelaar, E.M.C., et al. (2004). A novel and sensitive method for the detection of T cell stimulatory epitopes of α-/β-and gy-gliadin. Gut, 53(9), 1267–1273.PubMedCrossRefGoogle Scholar
  54. Spangfort, M.D., Mirza, O., Ipsen, H., et al. (2003). Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis. J Immunol, 171(6), 3084–3090.PubMedGoogle Scholar
  55. Stanley, J.S., King, N., Burks, A.W., et al. (1997). Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Archives of Biochemistry and Biophysics, 342(2), 244–253.PubMedCrossRefGoogle Scholar
  56. Steckelbroeck, S., Ballmer-Weber, B.K., Vieths, S. (2008). Potential, pitfalls, and prospects of food allergy diagnostics with recombinant allergens or synthetic sequential epitopes. J Allergy Clin Immunol, 121(6), 1323–1330.PubMedCrossRefGoogle Scholar
  57. Tanabe, S., Kobayashi, Y., Takahata, Y., et al. (2002). Some human B-and T-cell epitopes of bovine serum albumin, the major beef allergen. Biochemical and Biophysical Research Communications, 293(5), 1348–1353.PubMedCrossRefGoogle Scholar
  58. Taylor, S.L. (2006). Review of the development of methodology for evaluating the human allergenic potential of novel proteins. Mol Nutrition Food Res, 50(7), 604–609.CrossRefGoogle Scholar
  59. Tordesillas, L., Cuesta-Herranz, J., Gonzalez-Muñoz, M., et al. (2009a). T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects. Mol Immunol, 46(4), 722–728.PubMedCrossRefGoogle Scholar
  60. Tordesillas, L., Pacios, L.F., Palacin, A., et al. (2009b). Molecular basis of allergen cross-reactivity: Non-specific lipid transfer proteins from wheat flour and peach fruit as models. Mol Immunol, 47(2–3), 534–540.CrossRefGoogle Scholar
  61. Untersmayr, E., Szalai, K., Riemer, A.B., et al. (2006). Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen. Mol Immunol, 43(9), 1454–1461.PubMedCrossRefGoogle Scholar
  62. Valenta, R., Kraft, D. (1996). Type I allergic reactions to plant-derived food: A consequence of primary sensitization to pollen allergens. J Allergy Clin Immunol, 97(4), 893–895.PubMedCrossRefGoogle Scholar
  63. Valentino, M., Frelinger, J. (2009). An approach to the identification of T cell epitopes in the genomic era: Application to Francisella tularensis. Immunologic Research, 45(2–3), 218–228.PubMedCrossRefGoogle Scholar
  64. Vieths, S., Scheurer, S., Ballmer-Weber, B. (2002). Current understanding of cross-reactivity of food allergens and pollen. Annals of the New York Academy of Sciences, 964, 47–68.PubMedCrossRefGoogle Scholar
  65. Wang, L.F., Yu, M. (2009). Epitope mapping using phage-display random fragment libraries. Methods Mol Biol (Clifton, N.J.), 524, 315–332.CrossRefGoogle Scholar
  66. Wesley, Burks, A., Shin, D., Cockrell, G., et al. (1997). Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem, 245(2), 334–339.CrossRefGoogle Scholar
  67. Williams, S.C., Badley, R.A., Davis, P.J., et al. (1998). Identification of epitopes within beta lactoglobulin recognized by polyclonal antibodies using phage display and PEPSCAN. J Immunolo Methods, 213(1), 1–17.CrossRefGoogle Scholar
  68. Wulf, M., Hoehn, P., Trinder, P. (2009). Identification and validation of T-cell epitopes using the IFN-gamma ELISPOT assay. Methods Mol Biol (Clifton, N.J), 524, 439–446.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hong-Bing Chen
    • 1
  • Jin-Yan Gao
    • 2
  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
  2. 2.Department of Food ScienceNanchang UniversityNanchangChina

Personalised recommendations