Advertisement

Hypoallergenic Soybean, from Genes to Cultivar

  • Rong-Xia Guan
  • Xu-Qian Fang
  • Ru-Zhen Chang
  • Li-Juan Qiu
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

Soybean is one of the most important sources of edible vegetable oil and protein. However, soybean is considered as an allergenic food, particularly in western countries. At least 16 IgE-reactive proteins have been identified in soybean, among which Gly m Bd 30K, Gly m Bd 28K and Gly m Bd 60K appeared to be major allergens. These allergens account for less than 1% of total soybean protein. Soybean germplasm selection, breeding and genetic modification have been applied to develop soybean with low- or non-allergenicity. This chapter addresses the characterization of soybean allergens and possible approaches towards developing hypoallergenic soybean cultivars.

Keywords

Otential Aller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, A., Horikawa, T., Shimizu, H., et al. (2009). Soybean β-conglycinin as the main allergen in a patient with food-dependent exercise-induced anaphylaxis by tofu: Food processing alters pepsin resistance. Clin Exp Allergy, 39, 167–173.PubMedCrossRefGoogle Scholar
  2. Bando, N., Tsuji, H., Yamanashi, R., et al. (1996). Identification of the glycosolation site of a major soybean allergen, Gly m Bd 30K. Biosci Biotechnol Biochem, 60, 347–348.PubMedCrossRefGoogle Scholar
  3. Beardslee, T.A., Zeece, M.G., Sarath, G., et al. (2000). Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen Ara h 3. Int Arch Allergy Immunol, 123(4)., 299–307.PubMedCrossRefGoogle Scholar
  4. Ballmer-Weber, B.K., Vieths, S. (2008). Soy allergy in perspective. Curr Opin Allergy Clin Immunol, 8, 270–275.PubMedCrossRefGoogle Scholar
  5. Becker, W., Brasseur, D., Bresson, J.L., et al. (2004). Opinion of the sScientific pPanel on dDietetic pProducts, nNutrition and aAllergies on a request from the Commission relating to the evaluation of allergenic foods for labeling purposes (Request No. EFSA-Q-2003-016). EFSA, 32, 1–197.Google Scholar
  6. Burks, A.W., Casteel, H.B., Fiedorek, S.C., et al. (1994). Prospective oral food challenge study of two soybean protein isolates inpatients with possible milk or soy protein enterocolitis. Ped Allergy Immunol, 5, 40–45.CrossRefGoogle Scholar
  7. Codina, R., Lockey, R.F., Fernandez-Caldas, E., et al. (1997). Purification and characterization of a soybean hull allergen responsible for the Barcelona asthma outbreaks. II. Purification and sequencing of the Gly m 2 allergen. Clin Exp Allergy, 27(4), 424–430.PubMedCrossRefGoogle Scholar
  8. Derbyshire, E., Wright, D.B., Boulter, D. (1976). Legumin and vicilin, storage protein of legume seeds. Phytochemistry, 15, 3–24.CrossRefGoogle Scholar
  9. Duke, W. W. (1934). Soybean as a possible important source of allergy. J Allergy, 5, 300–302.CrossRefGoogle Scholar
  10. Duranti, M., Lovati, M.R., Dani, V., et al. (2004). The alpha-subunit from soybean 7S globulin lowers plasmalipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr, 134, 1334–1339.PubMedGoogle Scholar
  11. Errahali, Y., Morisset, M., Moneret-Vautrin, D.A., et al. (2002). Allergen in soy oils. Allergy, 57(7), 648–649.PubMedCrossRefGoogle Scholar
  12. Fang, N., Yu, S., Badger, T.M. (2004). Comprehensive phytochemicalprofile of soy protein isolate. J Agric Food Chem, 52, 4012–4020.PubMedCrossRefGoogle Scholar
  13. Friedman, M., Brandon, D.L. (2001). Nutritional and health benefits of soy proteins. J Agric Food Chem, 49, 1069–1086.PubMedCrossRefGoogle Scholar
  14. Gonzalez, R., Polo, F., Zapatero, L., et al. (1992). Purification and characterization of major in halant allergens from soybean hulls. Clin Exp Allergy, 22, 748–755.PubMedCrossRefGoogle Scholar
  15. Guan, R.X., Chang R.Z., Qiu L.J., et al. (2004). Analysis of protein subunit 7s/11s constitution and allergen lacking of soybean [Glycine max (L.). Merrill Cultivars. Acta Agron Sin, 30 (11), 1076–1079.Google Scholar
  16. Guan, R.X., Chang R.Z., Li, Y.H. (2010). Genetic diversity comparison between Chinese and Japanese soybeans (Glycine max (L.). Merr.). revealed by nuclear SSRs. Genet Resour Crop Evol, 57, 229–242.CrossRefGoogle Scholar
  17. Hajika, M., Takahashi, M., Sakai, S., et al. (1996). A new genotype of 7S globulin (β-conglycinin). detected in wild soybean (Glycine soja Sieb. et Zucc.). Breed Sci, 46, 385–386.Google Scholar
  18. Hajika, M., Takahashi, M., Sakai, S., et al. (1998). Dominant inheritance of a trait lacking β-conglycinin detected in a wild soybean line. Breed Sci, 48, 383–386.Google Scholar
  19. Hayashi, M., Kitamura, K., Harada, K. (2009). Genetic mapping of Cgdef Gene controlling accumulation of 7S globulin (β-Conglycinin). subunits in soybean seeds. J Heredity, 100(6), 802–806.CrossRefGoogle Scholar
  20. Hayashi, M., Miyahara, A., Sato, S., et al. (2001). Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res, 8, 301–310.PubMedCrossRefGoogle Scholar
  21. Helm, R.M., Cockrell, G., Connaughton, C., et al. (2000). Mutational analysis of the IgE-binding epitopes of P34/Gly m Bd 30K. J Allergy Clin Immunol, 105(2 part 1), 378–384.PubMedCrossRefGoogle Scholar
  22. Herian, A.M., Taylor, S.L., Bush, R.K. (1990). Identification of soybean allergens by immunoblotting with sera from soy-allergic adults, Int Arch Allergy Appl Immunol, 92, 193–198PubMedCrossRefGoogle Scholar
  23. Herman, E.M., Helm, R.J., Kinney, A. (2003). Genetic modification removes an immunodominant soybean allergen. Plant Physiol, 132, 36–43.PubMedCrossRefGoogle Scholar
  24. Hiemori, M., Bando, N., Ogawa, T. (2000). Occurrence of IgE antibody-recognizing N-linked glycan moiety of a soybean allergen, Gly m Bd 28K. Allergy and Immunol, 122, 238–245.CrossRefGoogle Scholar
  25. Hiemori, M., Hitomi, I., Kimoto, M., et al. (2004). Identification of the 23-kDa peptide from the precursor of the Gly m Bd 28K, a major soybean allergen, as a new allergen. Biochim Biophys Acta, 1675, 174–183.PubMedCrossRefGoogle Scholar
  26. Hymowitz, T., Newell, C.A. (1981). Taxonomy of the genus Glycine, domestication and uses of soybeans. Econ Bot, 35, 272–288.CrossRefGoogle Scholar
  27. Joseph, L.M., Hymowitz, T., Schmidt, M.A., et al. (2006). Evaluation of Glycine germplasm for nulls of the immunodominant allergen P34/Gly m Bd 30K. Crop Sci, 46, 1755–1763.CrossRefGoogle Scholar
  28. Kabourek, J.L. and Taylor, S.L. (2003). Soyfoods and allergies: Separating fact from fiction. The Soy Connection, 11, 1–6.Google Scholar
  29. Kalinski, A., Melroy, D.L., Dwivedi, R.S., et al. (1992). A soybean vacuolar protein (P34). related to thiol proteases is synthesized as a glycoprotein precursor during seed maturation. J Biol Chem, 267, 12068–12076.PubMedGoogle Scholar
  30. Kalinski, A., Weisemann, J.M., Matthews, B.F., et al. (1990). Molecular cloning of a protein associated with soybean seed oil bodies that is similar to thiol proteases of the papain family. J Biol Chem, 265(23), 13843–13848.PubMedGoogle Scholar
  31. Kerley, M.S. and Allee, G.L. (2003). Modifications in soybean seed composition to enhance animal feed use and value: moving from a dietary ingredient to a functional dietary component. Ag Bio Forum, 6, 14–17.Google Scholar
  32. Kitagawa, S., Ishimoto, M., Kikuchi, F., et al. (1991). A characteristic lacking or decreasing remarkably 7S globulin subunits induced with c-ray irradiation in soybean seeds. Jpn J Breed, 41(Suppl 2), 460–461.Google Scholar
  33. Kitamura, K. and Kaizuma, N. (1981). Mutant strains with low levels of subunits of 7S globulin in soybean (Glycine max Merr.). seed. Japan. J. Breed., 31, 353–359.Google Scholar
  34. Krishnan, H.B., Kim, W.S., Jang, S., et al. (2009). All three subunits of soybean β-conglycinin are potential food allergens. J Agric Food Chem, 57, 938–943.PubMedCrossRefGoogle Scholar
  35. Lin, J., Shewry, P.R., Archer, D.B., et al. (2006). The potential allergenicity of two 2S albumins from soybean (Glycine max): A protein microarray approach. Int Arch Allergy Immunol, 141, 91–102.PubMedCrossRefGoogle Scholar
  36. Metcalfe, D.D., Astwood, J.D., Townsend, R., et al. (1996). Assessment of allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr, 36, S165–S186.PubMedCrossRefGoogle Scholar
  37. Mittag, D., Vieths, S., Vogel, L., et al. (2004). Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J Allergy Clin Immunol, 113(1), 148–154.PubMedCrossRefGoogle Scholar
  38. Nielsen, N.C. (1985). Structure of soy proteins. In: Altschul, A.M., and Wilcke, H.L. (eds.). New Protein Food, Vol. 5. Seed Storage Proteins. Orlando: Academic Press, pp. 27–64.Google Scholar
  39. Ogawa, T., Tsuji, H., Bando, N., et al. (1993). Identification of the soybean allergenic protein, Gly m Bd 30K, with the soybean 34-kDa oil-body-associated protein. Biosci Biotechnol Biochem, 57, 1030–1033.PubMedCrossRefGoogle Scholar
  40. Ogawa, T., Bando, N., Tsuji, H., et al. (1995). α-Subunit of β-conglycinin, an allergenic protein recognized by IgE antibodies of soybean-sensitive patients with atopic dermatitis. Biosci Biotechnol Biochem, 59(5), 831–833.PubMedCrossRefGoogle Scholar
  41. Qiu, L.J., Nelson, R.L., Vodkin, L.O. (1997). Evaluation of soybean germplasm with random amplification polymorphic DNA (RAPD) markers. Scientia Agric Sin, 23, 408–417.Google Scholar
  42. Rihs, H.P., Chen, Z., Rueff, F., et al. (1999). Binding of the recombinant allergen soybean profilin (rGly m 3). is mediated by conformational epitopes. J Allergy Clin Immunol, 104, 1293–1301.PubMedCrossRefGoogle Scholar
  43. Samoto, M., Takahaski, K., Fukuda, Y., et al. (1996). Substantially complete removal of the 34 kDa allergenic soybean protein, Gly m Bd 30K from soy milk of a mutant lacking the α and α’-subunits of conglycinin. Biosci Biotech Biochem, 60, 1006–1010.CrossRefGoogle Scholar
  44. Takahashi, K., Banba, H., Kikuchi, A., et al. (1994). An induced mutant line lacking the R-subunit of β-conglycinin in soybean (Glycine max (L.). Merrill). Breed Sci, 46, 65–66.Google Scholar
  45. Taylor, S.L., Hefle, S.L., Munoz-Furlong, A. (1999). Nutrition and the life cycle: food allergies and avoidance diets. Nutr Today, 34, 15–22.CrossRefGoogle Scholar
  46. Taylor, S.L., Helfe, S.L. (2000). Hidden triggers of adverse reactions to foods. Can J Allergy Clin Immunol, 5, 106–110.Google Scholar
  47. Tsubokura, Y., Hajika, M., Harada, K. (2006). Molecular markers associated with β-conglycinin deficiency in soybean. Breed Sci, 56, 113–117.CrossRefGoogle Scholar
  48. Tsuji, H., Hiemori, M., Kimoto, M., et al. (2001). Cloning of cDNA encoding a soybean allergen, Gly m Bd 28 K. Biochim Biophys Acta, 1518(1-2), 178–182.PubMedCrossRefGoogle Scholar
  49. Tsuji, H., Bando, N., Heimori, M., et al. (1997). Purification of characterization of soybean allergen Gly m Bd 28K. Biosci Biotech Biochem, 61, 942–947.CrossRefGoogle Scholar
  50. van, R.R. (2004). Clinical importance of cross-reactivity in food allergy. Curr Opin Allergy Clin Immunol, 4, 235–240.Google Scholar
  51. Wu, Y.M., Guan, R.X, Liu, Z.X., et al. (2012). Synthesis and degradation of the major allergens in developing and germinating soybean seed. J Integr Plant Biol, 54(1), 4–14.PubMedCrossRefGoogle Scholar
  52. Xiang, P., Haas, E.J., Zeece, M.G., et al. (2004). C-Terminal 23 kDa polypeptide of soybean Gly m Bd 28K is a potential allergen. Planta, 220, 56–63.PubMedCrossRefGoogle Scholar
  53. Yaklich, R.W., Helm, R.M., Cockrell, G., et al. (1999). Analysis of the distribution of the major soybean seed allergens in a core collection of Glycine max accessions. Crop Sci, 39(5), 1444–1447.CrossRefGoogle Scholar
  54. Zhang, Y.Q., Guan, R.X., Liu, Z.X., et al. (2006). Identification of Gly m Bd 28K and Gly m Bd 30K lacking soybean by using random sampling of core collection in soybean. Acta Agron Sin, 32(3), 324–329.Google Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rong-Xia Guan
    • 1
  • Xu-Qian Fang
    • 1
  • Ru-Zhen Chang
    • 1
  • Li-Juan Qiu
    • 1
  1. 1.National Core Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology (Beijing), Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations