Nominal Automata for Resource Usage Control

  • Pierpaolo Degano
  • Gian-Luigi Ferrari
  • Gianluca Mezzetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7381)

Abstract

Two classes of nominal automata, namely Usage Automata (UAs) and Variable Finite Automata (VFAs) are considered to express resource control policies over program execution traces expressed by a nominal calculus (Usages). We first analyse closure properties of UAs, and then show UAs less expressive than VFAs. We finally carry over to VFAs the symbolic technique for model checking Usages against UAs, so making it possible to verify the compliance of a program with a larger class of security properties.

Keywords

Model Check Nominal Model Security Policy Expressive Power Dynamic Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)Google Scholar
  2. 2.
    Bartoletti, M., Zunino, R.: LocUsT: a tool for checking usage policies. Tech. Rep. TR08-07, University of Pisa (2008)Google Scholar
  3. 3.
    Bartoletti, M., Costa, G., Degano, P., Martinelli, F., Zunino, R.: Securing Java with local policies. Journal of Object Technology 8(4), 5–32 (2009)CrossRefGoogle Scholar
  4. 4.
    Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composition. Journal of Computer Security 17(5), 799–837 (2009)Google Scholar
  5. 5.
    Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model Checking Usage Policies. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35. Springer, Heidelberg (2009); Extended version to appear in Math. Stuct. Comp. Sci.CrossRefGoogle Scholar
  6. 6.
    Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)Google Scholar
  7. 7.
    Benedikt, M., Ley, C., Puppis, G.: Automata vs. Logics on Data Words. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bollig, B.: An Automaton over Data Words That Captures EMSO Logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bouyer, P.: A logical characterization of data languages. Information Processing Letters 84(2), 75–85 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alphabets. Tech. rep., CS-09-003, University of Leicester, UK (2009)Google Scholar
  12. 12.
    Degano, P., Mezzetti, G., Ferrari, G.L.: Nominal models and resource usage control. Tech. Rep. TR-11-09, Dipartimento di Informatica, Università di Pisa (2011)Google Scholar
  13. 13.
    Esparza, J.: On the Decidability of Model Checking for Several μ-calculi and Petri Nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13(3), 341–363 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Gordon, A.D.: Notes on Nominal Calculi for Security and Mobility. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Hamlen, K.W., Morrisett, J.G., Schneider, F.B.: Computability classes for enforcement mechanisms. ACM Trans. on Programming Languages and Systems 28(1), 175–205 (2006)CrossRefGoogle Scholar
  18. 18.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras and Minimal HD-Automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 569–578. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Neven, F., Schwentick, T., Vianu, V.: Towards Regular Languages over Infinite Alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Sangiorgi, D., Walker, D.: The Pi-Calculus - a theory of mobile processes. Cambridge University Press (2001)Google Scholar
  22. 22.
    Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs. Journal of Functional Programming 18(2), 179–249 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tzevelekos, N.: Fresh-register automata. ACM SIGPLAN Notices 46(1), 295–306 (2011)CrossRefGoogle Scholar
  25. 25.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierpaolo Degano
    • 1
  • Gian-Luigi Ferrari
    • 1
  • Gianluca Mezzetti
    • 1
  1. 1.Dipartimento di InformaticaUniversitá di PisaItaly

Personalised recommendations