Design of a Novel Reversible Full Adder and Reversible Full Subtractor

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)


Reversible computation plays an important role in the synthesis of circuits having application in quantum computing, low power CMOS design and nanotechnology based systems. In this paper, we propose an efficient design of a reversible full adder and a reversible full subtractor. In this work, the proposed reversible full adder and reversible full subtractor is better than the existing counterparts in terms of number of reversible gates, and critical path delay. In our design, the full adders are realized using synthesizable, less transistor count and low garbage output PRT-2 gates and the full subtractor is realized using less critical path delay PRT-1 gates. VHDL is used to implement a technology-independent design.


Reversible logic design Reversible full adder Reversible full subtractor nanotechnology based systems FPGA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computational process. IBM Journal of Research and Development 5, 183–191 (1961)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of. Research and Development 17, 525–532 (1973)MATHCrossRefGoogle Scholar
  3. 3.
    Peres, A.: Reversible logic and quantum computers. Physical Review A 32, 3266–3276 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Perkowski, M., Al-Rabadi, A., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Azad Khan, M., Coppola, A., Yanushkevich, S., Shmerko, V., Jozwiak, L.: A general decomposition for reversible logic. In: Proc. RM 2001, pp. 119–138 (2001)Google Scholar
  5. 5.
    Perkowski, M., Kerntopf, P.: Reversible Logic. In: Proc. EURO-MICRO, Warsaw, Poland (2001)Google Scholar
  6. 6.
    Thapliyal, H., Srinivas, M.B.: A Novel Reversible TSG Gate and Its Application for Designing Reversible Carry Look-Ahead and Other Adder Architectures. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS, vol. 3740, pp. 805–817. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Benett, C.H.: Notes on the history of reversible computation. IBM Journal of Research and Development 32, 16–23 (1998)CrossRefGoogle Scholar
  8. 8.
    Haghparast, M., Navi, K.: Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Applied Sciences Journal 4, 114–118 (2008)Google Scholar
  9. 9.
    Hasan, H.B., Islam, R., Chowdhury, A.R., Chowdhury, S.M.A.: Reversible logic synthesis for minimization of full adder circuit. In: Euro. Micro Symposium on Digital System Design, Belek Antalya, Turkey, pp. 50–54 (2003)Google Scholar
  10. 10.
    Perkowski, M., Jozwiak, L., Kerntopf, P., Misohchenko, A., Al-Rabadi, A., et al.: A general decomposition for reversible logic. In: 5th Intl. RedMullar Workshop, pp. 119–138 (2001)Google Scholar
  11. 11.
    Azad Khan, M.H.: Design of full adder with reversible gates. In: 5th ICCIT, pp. 515–519. East West University (2002)Google Scholar
  12. 12.
    Haghparasat, M., Navi, K.: A Novel Reversible full adder circuit for Nanotechnology based systems. Journal of Applied Sciences 7, 3995–4000 (2007)CrossRefGoogle Scholar
  13. 13.
    Hasan Babu, H., Chowdhury, A.R.: Design of a compact reversible binary coded decimal adder circuit. Journal of Systems Architecture 52, 272–282 (2006)CrossRefGoogle Scholar
  14. 14.
    Haghparast, M., Jassbi, S.J., Navi, K., Hashemipour, O.: Design of a Novel Reversible Multiplier Circuit using HNG Gate in Nanotechnology. World Applied Science Journal 3, 974–978 (2008)Google Scholar
  15. 15.
    Rashmi, S.B., Sreedhar, H.K.: Design of a novel optimized reversible multiplier. Journal of Computing 3, 82–86 (2011)Google Scholar
  16. 16.
    Rashmi, S.B., Tilak, B.G., Praveen, B.: Transistor Implementation of Reversible PRT Gates International. Journal of Engineering Science and Technology 3, 2289–2297 (2011)Google Scholar
  17. 17.
    Murali, K.V.R.M., Sinha, N., Mahesh, T.S., Levitt, M.H., Ramanathan, K.V., Kumar, A.: Quantum information processing by Nuclear magnetic resonance:experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system. Physical Review A 66, 022313 (2002)Google Scholar
  18. 18.
    Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proceedings of 11th IEEE International Conference on NanoTechnology, pp. 1430–1435 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Pondicherry Engineering CollegePuducherryIndia

Personalised recommendations