An Ontology Based Model for User Profile Building Using Web Page Segment Evaluation

  • K. S. Kuppusamy
  • G. Aghila
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)


The World Wide Web is the largest distributed information source which is accessed by billions of people all across the world. A unique content source on the web can be accessed by various users for different purposes. Hence it becomes mandatory to capture specific information requirements of each user. This paper proposes a model for building user profiles based on Ontology. The approach proposed in this paper achieves the goal of building user profiles using a hybrid approach. The profile building process is further enriched with the incorporation of web page segmentation. The proposed model extracts the requirement context of the user by utilizing both local and global sources during the profile building process.


User profile building Ontology based profiles web page segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allan, J., et al.: Challenges in information retrieval and language modeling. In: Workshop held at the center for intelligent information retrieval, Amherst (2002)Google Scholar
  2. 2.
    Smyth, B., Balfe, E.: Anonymous Personalization in Collaborative Web Search. Information Retrieval 9, 165–190 (2006)CrossRefGoogle Scholar
  3. 3.
    Rocchio, J.: Relevance Feedback in Information Retrieval. In: The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  4. 4.
    Jung, S., Herlocker, J.L., Webster, J.: Click Data as Implicit Relevance Feedback in Web Search. Information Processing and Management 43, 791–807 (2007)CrossRefGoogle Scholar
  5. 5.
    Fox, S., Kamawat, K., Mydland, M., Dumais, S., White, T.: Evaluating Implicit Measures to Improve the Search Experiences. ACM Transactions on Information Systems 23(2), 147–168 (2005)CrossRefGoogle Scholar
  6. 6.
    Mc Gowan, J.P.: A multiple model approach to personalised information access. Dissertation, University College Dublin (2003)Google Scholar
  7. 7.
    Vallet, D., Fernndez, M., Castells, P., Mylonas, P., Avrithis, Y.: Personalized Information Retrieval in Context. In: 3rd International Workshop on Modeling and Retrieval of Context, Boston, USA (2006)Google Scholar
  8. 8.
    Tamine, L., Boughanem, M., Zemirli, W.N.: Inferring the user’s interests using the search history. In: Workshop on information retrieval, Learning, Knowledge and Adaptatbility, Germany (2006)Google Scholar
  9. 9.
    Kim, H.R., Chan, P.K.: Learning implicit user interest hierarchy for context in personalization. In: Proceedings of the 8th International Conference on Intelligent User Interfaces IUI 2003, Miami Florida, USA (2003)Google Scholar
  10. 10.
    Liu, F., Yu, C., Meng, W.: Personalized Web Search For Improving Retrieval Effectivenss. IEEE Transactions on Knowledge and Data Engineering 16(1) (2004)Google Scholar
  11. 11.
    Sieg, A., Mobasher, B., Burke, R., Prabu, G., Lytinen, S.: Representing user information context with ontologies. In: Universal Access in Human-Computer Interaction (2005)Google Scholar
  12. 12.
    Challam, V., Gauch, S., Chandramouli, A.: Contextual Search Using Ontology Based User Profiles. In: Proceedings of RIAO 2007, Pittsburgh, USA (2007)Google Scholar
  13. 13.
    Widyantoro, H., Ioerger, T., Yen, J.: Learning User Interest Dynamics with a Three Descriptor Representation. Journal of the American Society for Information Science 52(3), 212–225 (2000)Google Scholar
  14. 14.
    Friend of A Friend (FOAF),
  15. 15.
    The Open Directory Project,
  16. 16.
    Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: Block-based web search. In: SIGIR 2004: Proceedings of the 27th annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, USA, pp. 456–463 (2004)Google Scholar
  17. 17.
    Kaszkiel, M., Zobel, J.: Effective Ranking with Arbitrary Passages. Journal of the American Society for Information Science 52(4) (2001)Google Scholar
  18. 18.
    Cai, D., Yu, S., Wen, J., Ma, W.-Y.: VIPS: A vision-based page segmentation algorithm, Tech. Rep. TR-2003-79 (2003)Google Scholar
  19. 19.
    Cao, J., Mao, B., Luo, J.: A segmentation method for web page analysis using shrinking and dividing. International Journal of Parallel, Emergent and Distributed Systems 25(2), 93–104 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Kohlschütter, C., Nejdl, W.: A densitometric approach to web page segmentation. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA (2008)Google Scholar
  21. 21.
    Chakrabarti, D., Kumar, R., Punera, K.: A graph-theoretic approach to webpage segmentation. In: Proceeding of the 17th International Conference on World Wide Web, Beijing, China (2008)Google Scholar
  22. 22.
    Kuppusamy, K.S., Aghila, G.: Museum: Multidimensional Web page Segment Evaluation Model. Journal of Computing 3(3), 24–27 (2011)Google Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer Science, School of Engineering and TechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations