Hybrid Technique for Effective Knowledge Representation

  • Poonam Tanwar
  • T. V. Prasad
  • Kamlesh Datta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)


Knowledge representation and inference mechanism are most desirable thing to make the system intelligent. System is known to an intelligent if its intelligence is equivalent to the intelligence of human being for a particular domain or general. Because of incomplete ambiguous and uncertain information the task of making intelligent system is very difficult. The objective of this paper is to present the knowledge base system architecture integrated with hybrid knowledge representation technique for making the system effective.


Knowledge Representation (KR) Semantic Net Script 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sowa, J.F.: Encyclopedia of Artificial Intelligence, 2nd edn. Wiley (1992)Google Scholar
  2. 2.
    Rich, E., Knight, K.: Artificial Intelligence, 2nd edn. McGraw-Hill (1991)Google Scholar
  3. 3.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2009)Google Scholar
  4. 4.
    Davis, R., Shrobe, H., Szolovits, P.: What is a Knowledge Representation? AI Magazine 14(1), 17–33 (1993)Google Scholar
  5. 5.
    Brachman, R., Levesque, H. (eds.): Readings in Knowledge Representation. Morgan Kaufman (1985)Google Scholar
  6. 6.
    Stillings, L.: Knowledge Representation, Ch. 4 and 5 (1994),
  7. 7.
    Houben, G.J.P.M.: Knowledge representation and reasoning. Dutch Research Database (Period 01/2002)Google Scholar
  8. 8.
    Frost, R.A.: A Method of Facilitating the Interface of Knowledge Base System Components. Computer Journal 28(2), 112–116 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sharif, A.M.: Knowledge representation within information systems in manufacturing environments. Brunel University Research Archive (2004)Google Scholar
  10. 10.
    Brewster, C., O’Hara, K., Fuller, S., Wilks, Y., Franconi, E., Musen, M.A., Ellman, J., Buckingham Shum, S.: Knowledge representation with ontologies: the present and future. IEEE Intelligent Systems, 72–81 (2004) ISSN 1541-1672Google Scholar
  11. 11.
    Allen, J., Ferguson, G., Gildea, D., Kautz, H., Schubert, L.: Artificial Intelligence, Natural Language Understanding, and Knowledge Representation and Reasoning, 2nd edn. Benjamin Cummings (1994)Google Scholar
  12. 12.
    Ali, S.S., Iwanska, L.: Knowledge representation for natural language processing in implemented system. Natural Language Engineering 3, 97–101(1997)Google Scholar
  13. 13.
    Morgenstern, L.: Knowledge Representation. Columbia University (1999),
  14. 14.
    Reichgelt, H.: Knowledge Representation: An AI Perspective, Chapter 5 (Semantic Networks) and Chapter 6 (Frames)Google Scholar
  15. 15.
    van Harmelen, F.: Knowledge Representation and Reasoning. Vrije Universitetit Amsterdam,
  16. 16.
    Kuechler Jr., W.L., Lim, N., Vaishnavi, V.K.: A smart object approach to hybrid knowledge representation and reasoning strategies. In: Hawaii International Conference on System Sciences, HICSS 1995 (1995)Google Scholar
  17. 17.
    Shetty, R.T.N., Riccio, P.-M., Quinqueton, J.: Hybrid Model for Knowledge Representation. In: 2006 International Conference on, vol. 1, pp. 355–361 (2006)Google Scholar
  18. 18.
    Chi, X., Haojun, M., Zhen, Z., Yinghong, P.: Research on hybrid expert system application to blanking technology, National Die and Mold CAD Engineering Research Center. Shanghai Jiao Tong University, Shanghai 200030, PR China (1999)Google Scholar
  19. 19.
    Quesgen, W., Junker, U., Voss, A.: Constraints in Hybrid Knowledge Representation System. Expert Systems Research Group, F.R.G.,
  20. 20.
    Rathke, C.: Object-oriented programming and frame-based knowledge representation. In: 5th International Conference, Boston (1993)Google Scholar
  21. 21.
    Hendrix, G.G.: Expanding the Utility of Semantic Networks through Partitioning. In: Artificial Intelligence Center, Stanford Research institute Menlo Park, California 94025Google Scholar
  22. 22.
    Lehmann, F.: Semantic networks, Parsons Avenue, Webster Groves, Missouri, U.S.A.Google Scholar
  23. 23.
    Gow, J.: Lecture notes, Imperial College, London,
  24. 24.
    Lee, T.B.: Chapter on “Semantic web road map” (1998),
  25. 25.
    Khatib, W.: Semantic modeling and knowledge representation in Multimedia (1999),
  26. 26.
  27. 27.
    Presentation on “Knowledge representation”,
  28. 28.
    Presentation on “Knowledge representation techniques”,
  29. 29.
  30. 30.
    Web document on “Introduction to Universal semantic net”,
  31. 31.
    Lecture notes on “knowledge representation misc psychology and languages for knowledge representation”,
  32. 32.
    Lecture notes on frame knowledge representation technique,
  33. 33.
    Presentation on “Knowledge representation using structured objects”,
  34. 34.
    Jeng, S.-K.: Lecture notes on “Knowledge representation”,
  35. 35.
    Presentation on “Knowledge representation and rule based systems”,
  36. 36.
    Presentation on “Various knowledge representation techniques”,,19/019.representa.ppt
  37. 37.
  38. 38.
    Tanwar, P., Prasad, T.V., Aswal, M.S.: Comparative Study of Three Declarative Knowledge Representation Techniques. International Journal on Computer Science and Engineering 02(07), 2274–2281 (2010)Google Scholar
  39. 39.
    Tanwar, P., Prasad, T.V., Datta, K.: An Effective Knowledge base system Architecture and issues in representation techniques. International Journal of Advancements in Technology,, ISSN 0976-4860
  40. 40.
    Lecturer notes on Knowledge Representation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Poonam Tanwar
    • 1
    • 2
  • T. V. Prasad
    • 3
  • Kamlesh Datta
    • 4
  1. 1.Dept. of CSELingaya’s UniversityFaridabadIndia
  2. 2.Uttarakhand Technical UniversityDehradunIndia
  3. 3.Lingaya’s UniversityFaridabadIndia
  4. 4.National Institute of TechnologyHamirpurIndia

Personalised recommendations