Advertisement

Rough Set Based Classification on Electronic Nose Data for Black Tea Application

  • Anil Kumar Bag
  • Bipan Tudu
  • Nabarun Bhattacharyya
  • Rajib Bandyopadhyay
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)

Abstract

The responses generated by a gas sensor array are difficult to classify due to their inherent imprecision, uncertainty and the procedures of computational intelligence are appropriate to deal with such imperfect knowledge. In recent years, rough set theory has attracted more attention of many researchers even though it was proposed in the early 1980’s by Z. Pawlak. The rough set based analysis makes it very convenient for classification of data especially with huge volume of information, as the method is very efficient to find the optimal subset of attributes. In this paper, the rough set based algorithm has been applied to generate representative rules using the datasets obtained from a gas sensor array in an electronic nose instrument, capable of sensing aroma of black tea samples and these rules are used to classify the black tea quality.

Keywords

Black tea Electronic nose Gas sensor array Rough set Reduct Lower approximation Upper approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peris, M., Escuder-Gilabert, L.: A 21st century technique for food control: Electronic noses. Analytica Chimica Acta 638(1), 1–15 (2009)CrossRefGoogle Scholar
  2. 2.
    Guo, D., Zhang, D., Li, N., Zhang, L., Yang, J.: A novel breath analysis system based on electronic olfaction. IEEE Transactions on Biomedical Engineering 57(11), art. no. 5523940, 2753–2763 (2010)CrossRefGoogle Scholar
  3. 3.
    Capua, E., Cao, R., Sukenik, C.N., Naaman, R.: Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions. Sensors and Actuators, B: Chemical 140(1), 122–127 (2009)CrossRefGoogle Scholar
  4. 4.
    Dutta, R., Hines, E.L., Gardner, J.W., Kashwan, K.R., Bhuyan, M.: Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sens. Actuators B: Chem. 94, 228–237 (2003)CrossRefGoogle Scholar
  5. 5.
    Bhattacharyya, N., Bandyopadhyay, R., Bhyan, M., Ghosh, A., Mudi, R.K.: Correlation of multi-sensor array data with ‘tasters’ panel evaluation for objective assessment of black tea flavour. In: Proc. ISOEN, Barcelona, Spain (2005)Google Scholar
  6. 6.
    Bhattacharyya, N., Bandyopadhyay, R., Bhuyan, M., Tudu, B., Ghosh, D., Jana, A.: Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrum. Meas. 57, 1313–1321 (2008)CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya, N., Seth, S., Tudu, B., Tamuly, P., Jana, A., Ghosh, D., Bandyopadhyay, R., Bhuyan, M., Sabhapandit, S.: Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuators B, Chem. 122(2), 627–634 (2007)CrossRefGoogle Scholar
  8. 8.
    Tudu, B., Metla, A., Das, B., Bhattacharyya, N., Jana, A., Ghosh, D., Bandyopadhyay, R.: Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach. IEEE Trans. Instrum. Meas. 58(9), 3069–3078 (2009)CrossRefGoogle Scholar
  9. 9.
    Kermani, B.G., Schiffman, S.S., Nagle, H.T.: A novel method for reducing the dimensionality in a sensor array. IEEE Trans. Instrum. Meas. 47(3), 728–741 (1998)CrossRefGoogle Scholar
  10. 10.
    Elkov, T., Martensson, P., Lundstrom, I.: Selection of variables for interpreting multivariate gas sensor data. Anal. Chim. Acta 381, 221–232 (1999)CrossRefGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernetics and Systems: An Int. J. 29, 661–688 (1998)MATHCrossRefGoogle Scholar
  12. 12.
    Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial, Rough Fuzzy Hybridization, pp. 3–98. Springer (1999)Google Scholar
  14. 14.
    Nguyen, S.H., Nguyen, H.S.: Pattern extraction from data. Fundamental Informaticae 34, 129–144 (1998)MATHGoogle Scholar
  15. 15.
    Hussain, F., Liu, H., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Min. Knowl. Dis. 6, 393–423 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dai, J.-H., Li, Y.-X.: Study on discretization based on rough set theory. In: Proc. of the First International Conference on Machine Learning and Cybernetics, Beijing, pp. 1371–1373 (November 2002)Google Scholar
  17. 17.
    Yang, P., Li, J., Huang, Y.: An attribute reduction algorithm by rough set based on binary discernibility matrix. In: Proc. of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 276–280 (2008)Google Scholar
  18. 18.
    Li, J., Pattaraintakorn, P., Cercone, N.: Rule Evaluations, Attributes, and Rough Sets: Extension and a Case Study. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 152–171. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Kovacs, E., Ignat, I.: Reduct equivalent rule induction based on rough set theory. In: Proc. IEEE 3rd International Conference on Intelligent Computer Communication and Processing, pp. 9–15 (2007)Google Scholar
  20. 20.
    Bag, A.K., Tudu, B., Roy, J., Bhattacharyya, N., Bandyopadhyay, R.: Optimization of sensor array in electronic nose: a rough set-based approach. IEEE Sensors Journal 11, 3000–3008 (2011)CrossRefGoogle Scholar
  21. 21.
    Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intel. 32(3), 569–575 (2010)CrossRefGoogle Scholar
  22. 22.
    Singh, S., Hines, E.L., Gardner, J.W.: Fuzzy neural computing of coffee and tainted-water data from an electronic nose. Sens. Actuators B 30(3), 185–190 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anil Kumar Bag
    • 1
  • Bipan Tudu
    • 2
  • Nabarun Bhattacharyya
    • 3
  • Rajib Bandyopadhyay
    • 2
  1. 1.Department of Applied Electronics and Instrumentation EngineeringFuture Institute of Engineering and ManagementKolkataIndia
  2. 2.Department of Instrumentation and Electronics EngineeringJadavpur UniversityKolkataIndia
  3. 3.Centre for Development of Advanced Computing(C-DAC)KolkataIndia

Personalised recommendations