Chemical Sensors Employed in Electronic Noses: A Review

  • Syeda Erfana Zohora
  • A. M. Khan
  • Nisar Hundewale
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)

Abstract

Electronic noses utilizes an array of chemical sensors of different specificities which responds to the volatile organic compounds present in the gases. The use of electronic chemical sensors in an array design with coupled signal conditioning and appropriate pattern recognition system is capable of identifying complex odours.Such an artificial gas sensing system is called ’electronic nose’. The requirement for the sensors in a electronic nose is that they have a partial sensitivity, i.e. that they can respond broadly to a range or class of gases rather than to a specific one. However, The electronic nose will categorize many odours that contain many chemical components. Different types of gas sensors in the sensor array includes metal oxide semiconductors,optical and amperometric gas sensor, surface acoustic sensors,piezoelectric gas sensors. In this review paper,we discuss the operating principle of each chemical sensor type and its use in electronic nose system.

Keywords

Electronic noses Chemical sensors Volatile Organic Compounds (VOC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ulmer, H., Mitrovics, J., Noetzel, G., Weimar, U., Gopel, W.: Odours and vapours identified with hybrid modular sensor systems. Sensors and Actuators B 43, 24–33 (1997)CrossRefGoogle Scholar
  2. 2.
    Niessen, W.M.A.: Current Practices of GC/Mass spectrometry. Marcel Dikker, New York (2001) ISBN 0-8-247-0473-8CrossRefGoogle Scholar
  3. 3.
    Kauer, J.S.: Contributions of topography and parallel processing to odour coding in the veterbrate olfactory pathway. Trends Neuroscience 14, 79–85 (1991)CrossRefGoogle Scholar
  4. 4.
    Gardner, J.W., Bartlet, P.N.: A brief history of electronic noses. Sens. & Actuators B 18-19, 211–220 (1994)Google Scholar
  5. 5.
    Vulicevic, I.R., Abdel-Aal, E.-S.M., Mittal, G.S., Lu, X.: Quality and storage life of par-baked frozen breads. LWT-Food Science and Technology 37(2), 205–213 (2004)CrossRefGoogle Scholar
  6. 6.
    Pecore, S., Kellen, L.: A consumer- focused QC/sensory program in the food industry. Food Quality and Preferences 13(6), 369–374 (2002)CrossRefGoogle Scholar
  7. 7.
    Morales, M.T., Tsimidou, M.: The role of volatile compounds and polyphenols in olive oil sensory quality. In: Harwood, J., Aparicio-Ruiz, R. (eds.) Handbook on Olive Oil: Analysis and Properties, pp. 393–458 (2000)Google Scholar
  8. 8.
    Persaud, K.C., Dodd, G.H.: Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 299, 352–355 (1982)CrossRefGoogle Scholar
  9. 9.
    Gardner, J.W., Hines, E.L., Pang, C.: Detection of vapours and odors from a multisensory array using pattern recognition: self organizing adaptive resonance techniques. Measurement and Control 29, 172–177 (1996)Google Scholar
  10. 10.
    Janata, J.: Principles of Chemical Sensors. Kluwer Academic Publishing Plenum, Dordrecht (1989)Google Scholar
  11. 11.
    Ikegami, A., Kaneyasu, M.: Olfactory detection using integrated sensors. In: Proc. 3rd Int. Conf. Solid-State Sensors and Actuators (Tranducers 1985), Philadelphia, PA, USA, June 7-11, pp. 136–139 (1985)Google Scholar
  12. 12.
    Kaneyasu, M., Ikegami, A., Arima, H., Iwanga, S.: Smell identification using a thick-film hybrid gas sensor. IEEE Trans. Components, Hybrids Manufact. Technol. CHMT-10, 267–273 (1987)CrossRefGoogle Scholar
  13. 13.
    Hesse, J., Gardner, J.W., Göpel, W.: Sensors in Manufacturing, Sensors Applications, vol. 1. Wiley-VCH, Dordrecht (2001) ISBN 3-527-29558-5Google Scholar
  14. 14.
    Bartlett, P.N., Ling-Chung, S.K.: Conducting polymer gas sensors Part II. Response of polypyrole to methanol vapours. Sens. & Actuators, B, Chem. 20, 287–292 (1989)CrossRefGoogle Scholar
  15. 15.
    MacDiarmid, A.G.: Polyaniline and polypyrrole: where are we headed? Synth. Met. 84, 27–34 (1997)CrossRefGoogle Scholar
  16. 16.
    De Wit, Vanneste, E., Geise, H.J., Nagels, L.J.: Chemiresistive sensors of responses to nine organic vapours. Sensors and Actuators B 50, 164–172 (1998)CrossRefGoogle Scholar
  17. 17.
    Covington, J.A., Gardner, J.W., Briand, D., de Rooij, N.F.: A polymer gate FET sensor array for detecting organic vapours. Sensors and Actuators B 77, 155–162 (2001)CrossRefGoogle Scholar
  18. 18.
    Deng, Z., Stone, D.C., Thompson, M.: Selective Detection of Aroma Components by Acoustic Wave Sensors Coated with Conducting Polymer Films. Analyst 121, 671–679 (1996)CrossRefGoogle Scholar
  19. 19.
    Luo, D., Hosseini, H.G., Stewart, J.R.: Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sensors and Actuators B-Chemical 99(2-3), 253–257 (2004)CrossRefGoogle Scholar
  20. 20.
    Dutta, R., Hines, E.L., Gardner, J.W., Boilot, P.: Bacteria classification using Cyranose 320 electronic nose. BioMedical Engineering OnLine 1, 4Google Scholar
  21. 21.
    Hopkins, A.R., Lewis, N.S.: Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent stimulants, dimethylmethylphosphonate and diisopropylmethyl-phosponate. Anal. Chem. 73, 884–892 (2001)CrossRefGoogle Scholar
  22. 22.
    Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of Machine Olfaction. Wiley-VCH, Dordrecht (2003) ISBN 3-527-30358-8Google Scholar
  23. 23.
    Eisele, I., Doll, T., Burgmair, M.: Low power gas detection with fet sensors. Sensors and Actuators B: Chemical 78(1-3), 19–25 (2001)CrossRefGoogle Scholar
  24. 24.
    Schmid, W., Barsan, N., Weimar, U.: Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurement. Sensors and Actuators B: Chemical 89(3), 232–236 (2003)CrossRefGoogle Scholar
  25. 25.
    Hamakawa, S., Li, L., Li, A., Iglesia, E.: Synthesis and hydrogen permeation properties of membranes based on dense scre0.95yb0.0503-[alpha]thin films. Solid State Ionics 148(1-2), 71–81 (2002)CrossRefGoogle Scholar
  26. 26.
    Tao, W.H., Tsai, C.-H.: H2s sensing properties of noble metal doped wo3 thin film sensor fabricated by micromaching. Sensors and Actuators B: Chemical 81(2-3), 237–247 (2002)CrossRefGoogle Scholar
  27. 27.
    Schaller, E., Bosset, J.O., Escher, F.: Electronic noses and their application to food. Lebensmitted Wissenschaft und-Technologie 31(4), 305–316 (1998)Google Scholar
  28. 28.
    Albert, K.J., Lewis, N.S.: Cross reactive chemical sensor arrays. Chem. Rev. 100, 2595–2626 (2000)CrossRefGoogle Scholar
  29. 29.
    Penza, M., Cassano, G., Tortorella, F.: Gas recognition by activated thin film sensors array. Sensors and Actuators B: Chemical 81(1), 115–121 (2001b)CrossRefGoogle Scholar
  30. 30.
    Dai, G.: A Study of the sensing properties of thin film sensor to trimethylamine. Sensors and Actuators B: Chemical 53(1-2), 8–12 (1998)CrossRefGoogle Scholar
  31. 31.
    Wolfbeis, O.S., Schaferling, M., Durkop, A.: Microchim. Acta 143, 221 (2003)CrossRefGoogle Scholar
  32. 32.
    Dickenson, T.A., White, J., Kauer, J.S., Watt, D.R.: Nature 382, 697 (1996)CrossRefGoogle Scholar
  33. 33.
    Di Natali, C., Salimbeni, D., Paolesse, R., Macagnano, A., D’Amico, A.: Sensors and Actuators B: Chemical 65, 220 (2002)CrossRefGoogle Scholar
  34. 34.
    Rakow, N.A., Suslick, K.S.: Nature 406, 710 (2000)CrossRefGoogle Scholar
  35. 35.
    Walt, D.R., Dikenson, T., White, J., Kauer, J., Johnson, S., Engelhardt, H., Suller, J., Jurs, P.: Optical sensor arrays for odor recognition. Biosensors and Bioelectronics 13(6), 697–699 (1998)CrossRefGoogle Scholar
  36. 36.
    Jin, Z., Su, Y., Duan, Y.: Development of a polyaniline-based optical ammonia sensor. Sensors and Actuators B: Chemical 72(1), 75–79 (2001)CrossRefGoogle Scholar
  37. 37.
    Curie, J., Curie, P.: Bull. Soc. Min. Paris 3, 90 (1980)Google Scholar
  38. 38.
    Khlebarov, Z.P., Stoyanova, A.I., Topalova, D.I.: Surface acoustic wave gas sensors. Sensors and Actuators B: Chemical 8(1), 33–40 (1992)CrossRefGoogle Scholar
  39. 39.
    D’Amico, A.V., Cooper, M.S.: Spatially distinct domains of cell behavior in the Zebrafish organizer region. Biochem. Cell Biol. 75, 563–577Google Scholar
  40. 40.
    Ferrari, V., Marioli, D., Taroni, A., Ranucci, E.: Multisensor array of mass microbalances for detection based on resonant piezo-layers of screen printed P2T. Sensors and Actuators B: Chemical 68, 81–87 (2000)CrossRefGoogle Scholar
  41. 41.
    Ballantine, D.S., Wohltjen, H.: Surface acoustic wave, Devices for chemical for chemical analysis. Anal. Chem. 61(11), 704–715 (1989)Google Scholar
  42. 42.
    Mielle, P.: Electronic noses: Towards the objective instrumental characterization of food aroma. Food Sci. Technology 7, 432–438 (1996)CrossRefGoogle Scholar
  43. 43.
    Dickert, F.L., Hayden, O., Zenkel, M.E.: Detection of volatile compounds with mass sensitive sensor arrays in the presence of variable ambient humidity. Anal. Chem. 71, 1338–1341 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Syeda Erfana Zohora
    • 1
  • A. M. Khan
    • 2
  • Nisar Hundewale
    • 1
  1. 1.College of Computers and Information SystemsTaif UniversityTaifKSA
  2. 2.Department of ElectronicsMangalore UniversityMangaloreIndia

Personalised recommendations