Advertisement

Analyzing the Performance of Watermarking Based on Swarm Optimization Methods

  • A. Lavanya
  • V. Natarajan
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 178)

Abstract

Digital image watermarking is the process of inserting data into an image. Nowadays, digital watermarks are being recognized as a solution to protect copyright of the digital images. In this study, an attempt has been made to retrieve watermark same as original watermark from the embedded image by Cat Swarm Optimization (CSO) technique. Embedding watermarks in frequency domain can usually be achieved by modifying the least significant bits of the transformation coefficients. Rounding approach is applied frequently to retrieve the hidden watermark in an image differing from the original watermark. Swarm intelligence techniques are proposed to eliminate the rounding errors caused by the simple approach while transferring the image from frequency domain to spatial domain. Results are demonstrated with less computation time, less number of iteration and less PSO time-varying inertia weight factor for CSO method in comparison with Particle Swarm Optimization (PSO).

Keywords

Watermarking Cat Swarm Optimization Particle Swarm Optimization PSO time-varying inertia weight factor method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alomari, R.S., Al-Jaber, A.: A Fragile Watermarking Algorithm for Content Authentication. Int. J. Comput. Inform. Sci. 2(1), 27–37 (2004)Google Scholar
  2. Aslantas, V., Ozer, S., Ozturk, S.: A Novel Clonal Selection Algorithm Based Fragile Watermarking Method. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 358–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. Aslantas, V., Ozer, S., Ozturk, S.: A Novel Fragile Watermarking based on Particle Swarm Optimization. IEEE Multimedia and Expo., 269–272 (2008)Google Scholar
  4. Aslantas, V., Ozer, S., Ozturk, S.: Improving the performance of DCT-based fragile watermarking using intelligent optimization algorithms. Optics Communications 282, 2806–2817 (2009)CrossRefGoogle Scholar
  5. Carlisle, A., Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environments. In: Proceedings of International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, pp. 429–434 (2000)Google Scholar
  6. Fridrich, J., Goljan, M., Baldoza, A.: New Fragile Authentication Watermark for Images. In: IEEE International Conference on Image Processing, pp. 446–449 (2000)Google Scholar
  7. Ganic, E., Eskicioglu, A.: Robust DWT-SVD Domain Image Watermarking: Embedding Data in All Frequencies. In: ACM Multimedia and Security Workshop, Magdeburg, Germany, pp. 166–174 (2004)Google Scholar
  8. Kallel, M., Lapayre, J.C., Bouhlel, M.S.: Improved Tian’s Method for Medical Image Reversible Watermarking. Int. J. Graphic Image Process. 7(2), 37 (2007)Google Scholar
  9. Kennedy, J., Eberhart, R., Shi, Y.H.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
  10. Lin, E.T., Delp, E.J.: A Review of Fragile Image Watermarks. In: Proceedings of the ACM Multimedia and Security Workshop, Orlando, pp. 25–29 (1999)Google Scholar
  11. Li, C.T.: Digital fragile watermarking scheme for authentication of JPEG images. In: IEEE Proceedings of the Vision, Image and Signal Processing, vol. 151, pp. 460–466 (2004)Google Scholar
  12. Li, C.T., Si, H.: Wavelet-based Fragile Watermarking Scheme for Image Authentication. J. Electron. Imaging 16(1), 013009-1-9, 17–22 (2007)Google Scholar
  13. Pan, J.S., Huang, H.C., Jain, L.C.: Intelligent Watermarking Techniques. World Scientific Publishing Company, Singapore (2004)MATHCrossRefGoogle Scholar
  14. Pei, W.T., Jeng, S.P., Shyi, M.C., Bin, Y.L., Szu, P.H.: Parallel Cat Swarm Optimization. In: IEEE Conference on Machine Learning and Cybernetics, pp. 3328–3333 (2008)Google Scholar
  15. Ratnaweera, A., Halgamuge, K., Watson, C.: Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans. on Evolutionary Computation 8(3), 240–255 (2004)CrossRefGoogle Scholar
  16. Schyndel, R., Tirkel, A., Osborne, C.: A digital watermark. In: IEEE International Conference on Image Processing, pp. 86–90 (1994)Google Scholar
  17. Shih, F.Y., Wu, Y.-T.: Enhancement of image watermark retrieval based on genetic algorithms. J. Vis. Commun. and Image Representation 16(2), 115–133 (2005a)CrossRefGoogle Scholar
  18. Shih, F.Y., Wu, Y.-T.: Robust watermarking and compression for medical images based on genetic algorithms. Information Sciences 175, 200–216 (2005b)CrossRefGoogle Scholar
  19. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp. 69–73 (1998)Google Scholar
  20. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proc. IEEE Int. Congr. Evolutionary Computation, vol. (3), pp. 101–106 (1999)Google Scholar
  21. Shi, Y., Eberhart, R.C.: Tracking and optimizing dynamic systems with particle swarms. In: Proc. IEEE Congr. Evolutionary Computation, pp. 94–97 (2001)Google Scholar
  22. Veeramachaneni, K., Peram, T., Ann, L., Mohan, C.: Optimization Using Particle Swarms with Near Neighbor Interactions. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003), doi:10.1007/3-540-45105-6CrossRefGoogle Scholar
  23. Veeramachaneni, K., Yan, W., Goebel, K., Osadciw, L.: Improving Classifier Fusion Using Particle Swarm Optimization. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, pp. 128–135 (2007)Google Scholar
  24. Wanga, H., Chang, C., Li, M.: Optimizing least-significant-bit substitution using cat swarm optimization strategy. Information Sciences, 1–11 (2010)Google Scholar
  25. Walton, S.: Information Authentication for a Slippery New Age. Dr. Dobbs Journal 20(4), 18–26 (1995)MathSciNetGoogle Scholar
  26. Winne, D.A., Knowles, H.D., Bull, D.R., Canagarajah, C.N.: Digital watermarking in wavelet domain with predistortion for authenticity verification and localization. In: Proc. of SPIE, San Jose, CA, vol. 4675, pp. 349–356 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Lavanya
    • 1
  • V. Natarajan
    • 1
  1. 1.Department of Instrumentation EngineeringMIT, Anna UniversityChennaiIndia

Personalised recommendations