Abstract
Data mining techniques are used extensively for deducting the implicit, previously unknown, and potentially useful information from large data sets by using statistical and intelligent methodologies. The deduction of patterns or conclusions may uncover the information that may sometimes compromise the confidentiality and privacy obligations. Preservation of privacy is an important aspect of data mining and thus study of achieving some data mining goals without sacrificing the privacy of the individuals is not only demanding but also a task of practical importance. The analysis of privacy preserving data mining (PPDM) algorithms should consider the effects of these algorithms in mining the results as well as in preserving privacy. The privacy should be preserved in all the three aspects of mining as association rules, classifiers and clusters. In this paper we present a review of the commonly existing efficient methodologies in the context of privacy preservation in data mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clifton, C.: Encyclopedia Britannica: Definition of Data Mining (2010), http://www.britannica.com/EBchecked/topic/1056150/data-mining (retrieved December 09, 2010)
Sachan, A., Roy, D.: TGPM: Terrorist Group Prediction Model for Counter Terrorism. International Journal of Computer Applications (0975 – 8887) 44(10), 49–52 (2012)
Laur, S., Lipmaa, H., Mielikäinen, T.: Cryptographically private support vector machines. In: Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 618–624 (2006)
Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algorithms. Advances in Database Systems, Springer (2008) 0387709916
Gorgônio, F.L., et al.: Privacy-Preserving Clustering on Distributed Databases: A Review and Some Contributions. Intechopen (2011)
Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: Proceedings of International Conference of Data Mining (ICDM 2005), pp. 589–592 (2005)
Liu, K., Kargupta, H., Ryan, J.: Random Projection-Based Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), 92–106 (January 2006)
Kou, G., Peng, Y., Shi, Y., Chen, Z.: Privacy-preserving data mining of medical data using data separation–based techniques. Data Science Journal 6(supp.) (July 30, 2007)
Poovammal, E., Ponnavaikko, M.: An Improved Method for Privacy Preserving Data Mining. In: IEEE International Advance Computing Conference Patiala, India (2009)
Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: Proc. of DKMD 2002 (June 2002)
Bertino, E., Lin, D., Jiang, W.: A Survey of Quantification of Privacy Preserving Data Mining Algorithm. In: Privacy-Preserving Data Mining. Springer, US (2008)
Narmada, V., Narasimha Swamy, B., Lokesh Sai Kumar, D.: An enhanced security algorithm for distributed databases in privacy preserving data bases. International Journal of Advanced Engineering Sciences and Technologies (IJAEST), 219–225 (2011)
Wong, R.C., Li, J., Fu, A.W., et al.: (α, k)-Anonymity: an enhaned k-anonymity model for privacy-preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759. ACM Press, New York (2006)
Singh, M.D., Radha Krishna, P., Saxena, A.: A Privacy Preserving Jaccard Similarity Function for Mining Encrypted Data. In: Proceedings of IEEE Conference (2009)
Meyerson, A., Williams, R.: The complexity of optimal k-anonymity. In: ACM PODS Conference (2004)
Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: A Survey. In: Handbook of Database Security, pp. 431–460. Springer (2008)
Martin, D., et al.: Worst Case Background Knowledge. In: ICDE Conference (2007)
Machanavajjhala, A., et al.: l-Diversity: Privacy Beyond k-Anonymity. In: ICDE (2006)
Wang, J., Luo, Y., Zhao, Y., Le, J.: A Survey on Privacy Preserving Data Mining. In: First International Workshop on Database Technology and Applications (2009)
Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: SIGMOD (2006)
Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. In: Proceedings of the ACM SIGMOD Conference (2000)
Agrawal, R., Srikant, R., Thomas, D.: Privacy-Preserving OLAP. In: Proceedings of the ACM SIGMOD Conference (2005)
Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: ACM SAC Symposium (2005)
Du, W., Zhan, Z.: Using Randomized Response Techniques for Privacy-Preserving Data Mining. In: SIGKDD, pp. 505–510 (August 2003)
Zhang, X., Bi, H.: Research on Privacy Preserving Classification Data Mining Based on Random Perturbation. In: International Conference on Information, Networking and Automation, ICINA (2010)
Aggarwal, C.C., Yu, P.S.: A Condensation Approach to Privacy Preserving Data Mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)
Nayak, G., Devi, S.: A Survey on Privacy Preserving Data Mining: Approaches and Techniques. International Journal of Engineering Science and Technology (IJEST), 2127–2133 (2011)
Wang, K., Fung, B.C.M., Yu, P.S.: Template-based privacy preservation in classification problems. In: ICDM, pp. 466–473 (2005)
Pinkas, B.: Cryptographic Techniques for Privacy-Preserving Data Mining. ACM SIGKDD Explorations 4(2) (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sachan, A., Roy, D., Arun, P.V. (2013). An Analysis of Privacy Preservation Techniques in Data Mining. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31600-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-31600-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31599-2
Online ISBN: 978-3-642-31600-5
eBook Packages: EngineeringEngineering (R0)