Stochastic Matching with Commitment

  • Kevin P. Costello
  • Prasad Tetali
  • Pushkar Tripathi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)


We consider the following stochastic optimization problem first introduced by Chen et al. in [7]. We are given a vertex set of a random graph where each possible edge is present with probability p e . We do not know which edges are actually present unless we scan/probe an edge. However whenever we probe an edge and find it to be present, we are constrained to picking the edge and both its end points are deleted from the graph. We wish to find the maximum matching in this model. We compare our results against the optimal omniscient algorithm that knows the edges of the graph and present a 0.573 factor algorithm using a novel sampling technique. We also prove that no algorithm can attain a factor better than 0.898 in this model.


Bipartite Graph Random Graph Competitive Ratio Maximum Match Full Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamczyk, M.: Improved analysis of the greedy algorithm for stochastic matching. Inf. Process. Lett. 111(15), 731–737 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aronson, J., Dyer, M., Frieze, A., Suen, S.: Randomized greedy matching. ii. Random Struct. Algorithms 6, 55–73 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aronson, J., Frieze, A., Pittel, B.G.: Maximum matchings in sparse random graphs: Karp-sipser revisited. Random Struct. Algorithms 12, 111–177 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP Is the Cure for Your Matching Woes: Improved Bounds for Stochastic Matchings. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 218–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. SIGACT News 39, 80–87 (2008)CrossRefGoogle Scholar
  6. 6.
    Chebolu, P., Frieze, A., Melsted, P.: Finding a maximum matching in a sparse random graph in o(n) expected time. J. ACM 57, 24:1–24:27 (2010)Google Scholar
  7. 7.
    Chen, N., Immorlica, N., Karlin, A.R., Mahdian, M., Rudra, A.: Approximating Matches Made in Heaven. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 266–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dean, B.C., Goemans, M.X., Vondrák, J.: Adaptivity and approximation for stochastic packing problems. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 395–404. Society for Industrial and Applied Mathematics, Philadelphia (2005)Google Scholar
  9. 9.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Farkas, J.G.: Uber die theorie der einfachen ungleichungen. Journal fur die Reine und Angewandte Mathematik 124, 1–27 (1902)Google Scholar
  11. 11.
    Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online stochastic matching: Beating 1-1/e. In: FOCS, pp. 117–126 (2009)Google Scholar
  12. 12.
    Frieze, A., Pittel, B.: Perfect matchings in random graphs with prescribed minimal degree. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 148–157. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  13. 13.
    Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to adwords. In: SODA, pp. 982–991 (2008)Google Scholar
  14. 14.
    Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching in the unknown distributional model. In: STOC, pp. 106–117 (2011)Google Scholar
  15. 15.
    Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for online bipartite matching. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (1990)Google Scholar
  16. 16.
    Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: An approach based on strongly factor-revealing lps. In: STOC, pp. 117–126 (2011)Google Scholar
  17. 17.
    Manshadi, V.H., Oveis-Gharan, S., Saberi, A.: Online stochastic matching: Online actions based on offline statistics. In: SODA (2011)Google Scholar
  18. 18.
    Mehta, A., Mirrokni, V.: Online ad serving: Theory and practice. Tutorial (2011)Google Scholar
  19. 19.
    Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic Shortest Paths Via Quasi-convex Maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 552–563. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84, 127–150 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: FOCS, pp. 364–375 (1981)Google Scholar
  22. 22.
    Ross, L.F., Rubin, D.T., Siegler, M., Josephson, M.A., Thistlethwaite, J.R., Woodle, E.S.: The case for a living emotionally related international kidney donor exchange registry. Transplantation Proceedings 18, 5–9 (1986)Google Scholar
  23. 23.
    Ross, L.F., Rubin, D.T., Siegler, M., Josephson, M.A., Thistlethwaite, J.R., Woodle, E.S.: Ethics of a paired-kidney-exchange program. The New England Journal of Medicine 336, 1752–1755 (1997)CrossRefGoogle Scholar
  24. 24.
    Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its application to stochastic integer programs. J. ACM 53, 978–1012 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kevin P. Costello
    • 2
  • Prasad Tetali
    • 1
  • Pushkar Tripathi
    • 1
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.University of California at RiversideUSA

Personalised recommendations