Advertisement

Epsilon-Net Method for Optimizations over Separable States

  • Yaoyun Shi
  • Xiaodi Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

We give algorithms for the optimization problem: \(\max_\rho \left\langle Q , \rho\right\rangle \), where Q is a Hermitian matrix, and the variable ρ is a bipartite separable quantum state. This problem lies at the heart of several problems in quantum computation and information, such as the complexity of QMA(2). While the problem is NP-hard, our algorithms are better than brute force for several instances of interest. In particular, they give PSPACE upper bounds on promise problems admitting a QMA(2) protocol in which the verifier performs only logarithmic number of elementary gate on both proofs, as well as the promise problem of deciding if a bipartite local Hamiltonian has large or small ground energy. For Q ≥ 0, our algorithm runs in time exponential in ||Q|| F . While the existence of such an algorithm was first proved recently by Brandão, Christandl and Yard [Proceedings of the 43rd annual ACM Symposium on Theory of Computation , 343–352, 2011], our algorithm is conceptually simpler.

Keywords

Density Operator Separable State Additive Error Polynomial Space CNOT Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The Power of Unentanglement. Theory of Computing 5, 1–42 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta algorithm and applications (2005)Google Scholar
  3. 3.
    Beigi, S.: NP vs QMAlog(2). Quantum Information and Computation 54(1&2), 0141–0151 (2010)Google Scholar
  4. 4.
    Borodin, A.: On relating time and space to size and depth. SIAM Journal on Computing 6(4), 733–744 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In: Proceedings of the ICQNM, pp. 34–37 (2009)Google Scholar
  6. 6.
    Brandão, F., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computation (STOC 2011), p. 343 (2011)Google Scholar
  7. 7.
    Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entangled measurements. arXiv:1011.0716 (2010)Google Scholar
  8. 8.
    Defant, A., Floret, K.: Tensor norms and operator ideals. North Holland (1992)Google Scholar
  9. 9.
    Doherty, A., Parrilo, P., Spedalieri, F.: A complete family of separability criteria. Physical Review A 69, 022308 (2004)CrossRefGoogle Scholar
  10. 10.
    Fan, K.: Minimax theorems. Proceedings of the National Academy of Sciences 39, 42–47 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gathen, J.: Parallel linear algebra. In: Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers (1993)Google Scholar
  12. 12.
    Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum Information and Computation 10, 343 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer (1993)Google Scholar
  14. 14.
    Gurvits, L.: Classical complexity and quantum entanglement. Journal of Computer and System Sciences 69, 448 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gutoski, G., Wu, X.: Parallel approximation of min-max problems with applications to classical and quantum zero-sum games. In: Proceedings of the 27rd Annual IEEE Conference on Computational Complexity (to appear, 2012)Google Scholar
  16. 16.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Review Modern Physics 81, 865 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Harrow, A., Montanaro, A.: An efficient test for product states, with applications to quantum Merlin-Arthur games. In: Proceedings of IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS 2010), p. 633 (2010)Google Scholar
  18. 18.
    Ioannou, L.: Computational complexity of the quantum separability problem. Quantum Information and Computation 7, 335 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jain, R., Watrous, J.: Parallel approximation of non-interactive zero-sum quantum games. In: Proceedings of the 24th IEEE Conference on Computational Complexity, pp. 243–253 (2009)Google Scholar
  20. 20.
    Kale, S.: Efficient algorithms using the multiplicative weights update method. PhD thesis. Princeton University (2007)Google Scholar
  21. 21.
    Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Certificate Verification: Single versus Multiple Quantum Certificates, quant-ph/0110006 (2001)Google Scholar
  22. 22.
    Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American Mathematical Society (2002)Google Scholar
  23. 23.
    Ling, C., Qi, L., Nie, J., Ye, Y.: Bi-Quadratic Optimization over Unit Spheres and Semidefinite Programming Relaxations. SIAM Journal on Optimization 20(3), 1286–1310 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Marriott, C., Watrous, J.: Quantum Arthur-Merlin Games. Computational Complexity 14(2), 122–152 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Comm. Math. Phys., 291 (2009)Google Scholar
  26. 26.
    Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Watrous, J.: Lecture Notes on Theory of Quantum Information (2008)Google Scholar
  28. 28.
    Wu, X.: Equilibrium value method for the proof of QIP=PSPACE. arXiv:1004.0264v4 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yaoyun Shi
    • 1
  • Xiaodi Wu
    • 1
  1. 1.Department of EECSUniversity of MichiganAnn ArborUSA

Personalised recommendations