Skip to main content

Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups

(Extended Abstract)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7391)

Abstract

We consider the problem of testing isomorphism of groups of order n given by Cayley tables. The trivial n logn bound on the time complexity for the general case has not been improved upon over the past four decades. We demonstrate that the obstacle to efficient algorithms is the presence of abelian normal subgroups; we show this by giving a polynomial-time isomorphism test for groups without nontrivial abelian normal subgroups. This concludes a project started by the authors and J. A. Grochow (SODA 2011). Two key new ingredient are: (a) an algorithm to test permutational isomorphism of permutation groups in time, polynomial in the order and simply exponential in the degree; (b) the introduction of the “twisted code equivalence problem,” a generalization of the classical code equivalence problem by admitting a group action on the alphabet. Both of these problems are of independent interest.

Keywords

  • Group Isomorphism
  • Permutational Isomorphism
  • Code Equivalence

See http://people.cs.uchicago.edu/~laci/ papers for the full version of this paper.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31594-7_5
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-31594-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschbacher, M., Guralnick, R.: Some applications of the first cohomology group. J. Algebra 90(2), 446–460 (1984)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Babai, L., Beals, R.: A polynomial-time theory of black-box groups I. In: Groups St Andrews 1997 in Bath. LMS Lect. Notes, vol. 260, pp. 30–64. Cambr. U. Press (1999)

    Google Scholar 

  3. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.M.: Code equivalence and group isomorphism. In: Proc. 22nd SODA, pp. 1395–1408 (2011)

    Google Scholar 

  4. Babai, L., Qiao, Y.M.: Polynomial-time isomorphism test for groups with abelian Sylow towers. In: 29th STACS, pp. 453–464 (2012)

    Google Scholar 

  5. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. London Math. Soc. 13(1), 1–22 (1981)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism testing in finite groups. J. Symb. Comput. 35, 241–267 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Felsch, V., Neubüser, J.: On a programme for the determination of the automorphism group of a finite group. In: Proc. Conf. on Computational Problems in Algebra, Oxford, 1967, pp. 59–60. Pergamon Press (1970)

    Google Scholar 

  8. Furst, M.L., Hopcroft, J., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: Proc. 21st FOCS, pp. 36–41. IEEE Comp. Soc. (1980)

    Google Scholar 

  9. Kavitha, T.: Linear time algorithms for abelian group isomorphism and related problems. J. Comput. Syst. Sci. 73(6), 986–996 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Knuth, D.E.: Efficient representation of perm groups. Combinat. 11, 57–68 (1991)

    MathSciNet  Google Scholar 

  11. Le Gall, F.: Efficient isomorphism testing for a class of group extensions. In: 26th STACS, pp. 625–636 (2009)

    Google Scholar 

  12. Luks, E.M.: Hypergraph isomorphism and structural equivalence of boolean functions. In: Proc. 31st ACM STOC, pp. 652–658. ACM Press (1999)

    Google Scholar 

  13. Luks, E.M., Miyazaki, T.: Polynomial-time normalizers for permutation groups with restricted composition factors. In: 13th ISAAC, pp. 176–183 (2002)

    Google Scholar 

  14. Luks, E.M., Seress, Á.: Computing the Fitting subgroup and solvable radical for small-base permutation groups in nearly linear time. In: Workshop on Groups and Computation II, DIMACS Series in DMTCS, pp. 169–181 (1991)

    Google Scholar 

  15. Miller, G.L.: On the n logn isomorphism technique. In: 10th STOC, pp. 51–58 (1978)

    Google Scholar 

  16. Qiao, Y.M., Sarma, J.M.N., Tang, B.: On isomorphism testing of groups with normal Hall subgroups. In: Proc. 28th STACS, pp. 567–578 (2011)

    Google Scholar 

  17. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1996)

    Google Scholar 

  18. Seress, Á.: Permutation Group Algorithms. Cambridge Univ. Press (2003)

    Google Scholar 

  19. Sims, C.C.: Computation with permutation groups. In: Petrick, S.R. (ed.) Proc. 2nd Symp. Symb. Algeb. Manip., pp. 23–28. ACM Press (1971)

    Google Scholar 

  20. Steinberg, R.: Generators for simple groups. Canad. J. Math. 14, 277–283 (1962)

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Suzuki, M.: Group Theory II. Springer (1986)

    Google Scholar 

  22. Wilson, J.B.: Decomposing p-groups via Jordan algebras. J. Algebra 322, 2642–2679 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  23. Wilson, J.B.: Finding central decompositions of p-groups. J. Group Theory 12, 813–830 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babai, L., Codenotti, P., Qiao, Y. (2012). Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)