The Parameterized Complexity of k-Edge Induced Subgraphs

  • Bingkai Lin
  • Yijia Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

We prove that finding a k-edge induced subgraph is fixed-parameter tractable, thereby answering an open problem of Leizhen Cai [2]. Our algorithm is based on several combinatorial observations, Gauss’ famous Eureka theorem [1], and a generalization of the wellknown fpt-algorithm for the model-checking problem for first-order logic on graphs with locally bounded tree-width due to Frick and Grohe [13]. On the other hand, we show that two natural counting versions of the problem are hard. Hence, the k-edge induced subgraph problem is one of the very few known examples in parameterized complexity that are easy for decision while hard for counting.

Keywords

Parameterized Complexity Computable Function Relation Symbol Counting Problem Induce Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.: Eureka! num = Δ + Δ + Δ. Journal of Number Theory 23(3), 285–293 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open problems in parameterized and exact computation - IWPEC 2006. Technical Report UU-CS-2006-052, Department of Information and Computing Sciences, Utrecht University (2006)Google Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cai, L.: Private communication (2008)Google Scholar
  5. 5.
    Cai, L., Chan, S.M., Chan, S.O.: Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: Proceedings of 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), pp. 250–263. IEEE Computer Society Press (2007)Google Scholar
  7. 7.
    Chen, Y.-J., Thurley, M., Weyer, M.: Understanding the Complexity of Induced Subgraph Isomorphisms. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 587–596. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 192–242. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  10. 10.
    Dvorak, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proceedins of the 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 133–142. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing 33(4), 892–922 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  13. 13.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of ACM 48(6), 1184–1206 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science 289(2), 997–1008 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Seese, D.: Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6(6), 505–526 (1996)MathSciNetMATHGoogle Scholar
  16. 16.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bingkai Lin
    • 1
  • Yijia Chen
    • 1
  1. 1.Shanghai Jiao Tong Universitychina

Personalised recommendations