Advertisement

Quantum Adversary (Upper) Bound

  • Shelby Kimmel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

We describe a method for upper bounding the quantum query complexity of certain boolean formula evaluation problems, using fundamental theorems about the general adversary bound. This nonconstructive method gives an upper bound on query complexity without producing an algorithm. For example, we describe an oracle problem that we prove (non-constructively) can be solved in O(1) queries, where the previous best quantum algorithm uses a polynomial number of queries. We then give an explicit O(1) query algorithm based on span programs, and show that for a special case of this problem, there exists a O(1) query algorithm that uses the quantum Haar transform. This special case is a potentially interesting problem in its own right, which we call the Haar Problem.

Keywords

Boolean Function Quantum Algorithm Query Complexity Query Algorithm General Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoyer, P., Lee, T., Spalek, R.: Negative weights make adversaries stronger. In: Proc. 39th ACM STOC 2007, pp. 526–535 (2007)Google Scholar
  2. 2.
    Lee, T., Mittal, R., Reichardt, B., Spalek, R., Szegedy, M.: Quantum query complexity of state conversion. In: Proc. 52nd IEEE FOCS 2011, pp. 344–353 (2011)Google Scholar
  3. 3.
    Ambainis, A.: Quantum lower bounds by quantum arguments. In: Proc. 32nd ACM STOC 2000, pp. 636–643 (2000)Google Scholar
  4. 4.
    Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ambainis, A., Magnin, L., Roetteler, M., Roland, J.: Symmetry-assisted adversaries for quantum state generation. In: Proc. 24th IEEE CCC 2011, pp. 167–177 (2011)Google Scholar
  6. 6.
    Hoyer, Neerbek, Shi: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34, 429–448 (2008)MathSciNetGoogle Scholar
  7. 7.
    Reichardt, B.W., Spalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proc. 40th ACM STOC 2008, pp. 103–112 (2008)Google Scholar
  8. 8.
    Zhan, B., Kimmel, S., Hassidim, A.: Super-polynomial quantum speed-ups for boolean evaluation trees with hidden structure. In: Proc. 3rd ACM ITCS 2012, pp. 249–265 (2012)Google Scholar
  9. 9.
    Park, S., Bae, J., Kwon, Y.: Wavelet quantum search algorithm with partial information. Chaos, Solitons and Fractals 32(4), 1371–1374 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hoyer, P.: Quantum ordered searching. Abstract from Talk at QIP (2001) (unpublished)Google Scholar
  11. 11.
    Liu, Y.K.: Quantum algorithms using the curvelet transform. In: Proc. 41st ACM STOC 2009, pp. 391–400 (2009)Google Scholar
  12. 12.
    Reichardt, B.W.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In: Proc. 50th IEEE FOCS 2009, pp. 544–551 (2009)Google Scholar
  13. 13.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian nand tree. Theory of Computing 4(1), 169–190 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Childs, A.M., Cleve, R., Jordan, S.P., Yeung, D.: Discrete-query quantum algorithm for NAND trees. Theory of Computing 5(1), 119–123 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Reichardt, B.W.: Reflections for quantum query algorithms. In: Proc. 22nd ACM-SIAM SODA 2011, pp. 560–569 (2011)Google Scholar
  16. 16.
    Saks, M., Wigderson, A.: Probabilistic boolean decision trees and the complexity of evaluating game trees. In: Proc. 27th IEEE FOCS 1986, pp. 29–38 (1986)Google Scholar
  17. 17.
    Haar, A.: On the Theory of Orthogonal Function Systems. Mathematische Annalen 69(3), 331–371 (1910)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nievergelt, Y.: Wavelets Made Easy. Birkhäuser, Washington (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proc. 25th ACM STOC 1993, pp. 11–20 (1993)Google Scholar
  20. 20.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proc. 35th IEEE FOCS 1994, pp. 124–134. IEEE Computer Society (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shelby Kimmel
    • 1
  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations