Skip to main content

Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

The quantum query complexity of Boolean matrix multiplication is typically studied as a function of the matrix dimension, n, as well as the number of 1s in the output, ℓ. We prove an upper bound of \(\widetilde{\mathrm{O}}(n\sqrt{\ell})\) for all values of ℓ. This is an improvement over previous algorithms for all values of ℓ. On the other hand, we show that for any ε < 1 and any ℓ ≤ εn 2, there is an \(\Omega(n\sqrt{\ell})\) lower bound for this problem, showing that our algorithm is essentially tight.

We first reduce Boolean matrix multiplication to several instances of graph collision. We then provide an algorithm that takes advantage of the fact that the underlying graph in all of our instances is very dense to find all graph collisions efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 22–31 (2004)

    Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM Journal on Computing (Special Issue on Quantum Computing) 26, 1510–1523 (1997), arXiv:quant-ph/9701001v1

    Google Scholar 

  3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48 (2001)

    Google Scholar 

  4. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

    Article  Google Scholar 

  5. Belovs, A.: Span programs for functions with constant-sized 1-certificates. Technical Report arXiv:1105.4024, arXiv (2011)

    Google Scholar 

  6. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of the 17th ACM-SIAM Symposium On Discrete Algorithms, pp. 880–889 (2006)

    Google Scholar 

  7. Childs, A., Kimmel, S., Kothari, R.: The quantum query complexity of read-many formulas. Technical Report arXiv:1112.0548v1, arXiv (2011)

    Google Scholar 

  8. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. Technical Report arXiv:quant-ph/9607014v2, arXiv (1996)

    Google Scholar 

  9. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM Journal on Computing 35(6), 1310–1328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Le Gall, F.: Improved output-sensitive quantum algorithms for Boolean matrix multiplication. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 1464–1476 (2012)

    Google Scholar 

  11. Le Gall, F.: Improved time-efficient output-sensitive quantum algorithms for Boolean matrix multiplication, arXiv:1201.6174 (2012)

    Google Scholar 

  12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  13. Lingas, A.: A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 408–419. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM Journal on Computing 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vassilevska Williams, V., Williams, R.: Sub-cubic equivalences between path, matrix and triangle problems. In: Proceedings of the 51st IEEE Symposium on Foundations of Computer Science, pp. 645–654 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeffery, S., Kothari, R., Magniez, F. (2012). Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics