Skip to main content

Quantum Strategies Are Better Than Classical in Almost Any XOR Game

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Abstract

We initiate a study of random instances of nonlocal games. We show that quantum strategies are better than classical for almost any 2-player XOR game. More precisely, for large n, the entangled value of a random 2-player XOR game with n questions to every player is at least 1.21... times the classical value, for 1 − o(1) fraction of all 2-player XOR games.

Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 and FP7 FET-Open project QCS. Full version available as arXiv preprint arXiv:1112.3330.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Physical Review Letters 98, 230501 (2007)

    Article  Google Scholar 

  2. Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., Pironio, S.: Guess your neighbour’s input: a multipartite non-local game with no quantum advantage. Physical Review Letters 104, 230404 (2010), also arXiv:1003.3844

    Google Scholar 

  3. Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)

    Google Scholar 

  4. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer (2010)

    Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)

    Google Scholar 

  6. Braverman, M., Makarychev, K., Makarychev, Y., Naor, A.: The Groethendieck constant is strictly smaller than Krivine’s bound. In: Proceedings of FOCS 2011, pp. 453–462 (2011)

    Google Scholar 

  7. Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of multiplayer XOR games, arxiv: 1108.5647

    Google Scholar 

  8. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proceedings of Complexity 2011, pp. 157–166 (2011); also arxiv: 1012.5403

    Google Scholar 

  9. Cirel’son, B. (Tsirelson): Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics 4, 93–100 (1980)

    Google Scholar 

  10. Clauser, J., Horne, M., Shimony, A., Holt, R.: Physical Review Letters 23, 880–884 (1969)

    Article  Google Scholar 

  11. Cleve, R., Höyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004); also quant-ph/0404076

    Google Scholar 

  12. Davidson, K., Szarek, S.: Local operator theory, random matrices and Banach spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook on the Geometry of Banach Spaces, vol. 1, pp. 317–366. Elsevier (2001)

    Google Scholar 

  13. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  14. Grothendieck, A.: Resume de la theorie metrique des produits tensoriels topologiques. Boletim Sociedade De Matematico de Sao Paulo 8, 1–79 (1953)

    MathSciNet  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC 1996, pp. 212–219 (1996)

    Google Scholar 

  16. Krivine, J.-L.: Sur la constante de Grothendieck. Comptes Rendus de l’Académie des Sciences, Series A-B 284, A445–A446 (1977)

    Google Scholar 

  17. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Communications in Mathematical Physics 306(3), 695–746 (2011); arXiv:1007.3043

    Google Scholar 

  18. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27(4), 439–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1, 457–483 (1967)

    Article  Google Scholar 

  20. Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms and Their Analysis. Cambridge University Press (2005)

    Google Scholar 

  21. Montero, A.M., Tonge, A.M.: The Schur multiplication in tensor algebras. Studia Math. 68(1), 1–24 (1980)

    MathSciNet  Google Scholar 

  22. Parisi, G.: The order parameter for spin glasses: a function on the interval 0-1. Journal of Physics A: Mathemathical and General 13, 1101–1112 (1980)

    Article  Google Scholar 

  23. Reeds, J.A.: A new lower bound on the real Grothendieck constant (1991) (unpublished manuscript), http://www.dtc.umn.edu/reedsj/bound2.dvi

  24. Sherrington, D., Kirkpatrick, S.: Infinite ranged models of spin glasses. Physical Review B 17, 4384–4403 (1978)

    Article  Google Scholar 

  25. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: FOCS 1994, pp. 124–134. IEEE (1994)

    Google Scholar 

  26. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum cryptography. Physical Review Letters 106, 220501 (2011)

    Article  Google Scholar 

  27. Simon, D.R.: On the power of quantum computation. In: FOCS 1994, pp. 116–123. IEEE (1994)

    Google Scholar 

  28. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press (1999)

    Google Scholar 

  29. Talagrand, M.: The generalized Parisi formula. Comptes Rendus de l’Académie des Sciences, Series I 337, 111–114 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Tao, T.: Topics in Random Matrix Theory, Draft of a book, http://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

  31. Wehner, S.: Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Physical Review A 73, 022110 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A. et al. (2012). Quantum Strategies Are Better Than Classical in Almost Any XOR Game. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics