Advertisement

Dominators, Directed Bipolar Orders, and Independent Spanning Trees

  • Loukas Georgiadis
  • Robert E. Tarjan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

We consider problems related to dominators and independent spanning trees in flowgraphs and provide linear-time algorithms for their solutions. We introduce the notion of a directed bipolar order, generalizing a previous notion of Plein and Cheriyan and Reif. We show how to construct such an order from information computed by several known algorithms for finding dominators. We show how to concurrently verify the correctness of a dominator tree D and a directed bipolar order O very simply, and how to construct from D and O two spanning trees whose paths are disjoint except for common dominators. Finally, we describe alternative ways to verify dominators without using a directed bipolar order.

Keywords

Span Tree Dominator Tree Valid Tree Independent Span Tree Proper Descendant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allesina, S., Bodini, A.: Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. Journal of Theoretical Biology 230(3), 351–358 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM Journal on Computing 28(6), 2117–2132 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amyeen, M.E., Fuchs, W.K., Pomeranz, I., Boppana, V.: Fault equivalence identification using redundancy information and static and dynamic extraction. In: Proceedings of the 19th IEEE VLSI Test Symposium (March 2001)Google Scholar
  4. 4.
    Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal on Computing 38(4), 1533–1573 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cheriyan, J., Reif, J.H.: Directed s-t numberings, rubber bands, and testing digraph k-vertex connectivity. Combinatorica, 435–451 (1994); also in SODA 1992Google Scholar
  6. 6.
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems 13(4), 451–490 (1991)CrossRefGoogle Scholar
  7. 7.
    Georgiadis, L.: Testing 2-Vertex Connectivity and Computing Pairs of Vertex-Disjoint s-t Paths in Digraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 738–749. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Georgiadis, L.: Approximating the Smallest 2-Vertex Connected Spanning Subgraph of a Directed Graph. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 13–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, pp. 862–871 (2004)Google Scholar
  10. 10.
    Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)Google Scholar
  11. 11.
    Hecht, M.S., Ullman, J.D.: Flow graph reducibility. In: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC 1972, pp. 238–250 (1972)Google Scholar
  12. 12.
    Huck, A.: Independent trees in graphs. Graphs and Combinatorics 10, 29–45 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articulation points in linear time. Theoretical Computer Science (in press, 2012)Google Scholar
  14. 14.
    Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)zbMATHCrossRefGoogle Scholar
  15. 15.
    Maxwell, E.K., Back, G., Ramakrishnan, N.: Diagnosing memory leaks using graph mining on heap dumps. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 115–124 (2010)Google Scholar
  16. 16.
    McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer Science Review 5(2), 119–161 (2011)CrossRefGoogle Scholar
  17. 17.
    Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 96–115 (1927)zbMATHGoogle Scholar
  18. 18.
    Plehn, J.: Über die Existenz und das Finden von Subgraphen. PhD thesis. University of Bonn, Germany (May 1991)Google Scholar
  19. 19.
    Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using Dominators for Solving Constrained Path Problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–159 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Tarjan, R.E.: Testing flow graph reducibility. In: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 96–107 (1973)Google Scholar
  22. 22.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22(2), 215–225 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica 6(2), 171–185 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Whitty, R.W.: Vertex-disjoint paths and edge-disjoint branchings in directed graphs. Journal of Graph Theory 11, 349–358 (1987)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Loukas Georgiadis
    • 1
  • Robert E. Tarjan
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of IoanninaGreece
  2. 2.Department of Computer SciencePrinceton UniversityPrincetonUSA
  3. 3.Hewlett-Packard LaboratoriesUSA

Personalised recommendations