Succinct Indices for Range Queries with Applications to Orthogonal Range Maxima

  • Arash Farzan
  • J. Ian Munro
  • Rajeev Raman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)


We consider the problem of preprocessing N points in 2D, each endowed with a priority, to answer the following queries: given a axis-parallel rectangle, determine the point with the largest priority in the rectangle. Using the ideas of the effective entropy of range maxima queries and succinct indices for range maxima queries, we obtain a structure that uses O(N) words and answers the above query in O(logN loglogN) time. This a direct improvement of Chazelle’s result from 1985 [10] for this problem – Chazelle required O(N/ε) words to answer queries in O((logN)1 + ε ) time for any constant ε > 0.


Range Query Query Point Query Time Space Usage Vertical Slab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: query lower bounds, optimal structures in 3-D, and higher-dimensional improvements. In: Snoeyink, J., de Berg, M., Mitchell, J.S.B., Rote, G., Teillaud, M. (eds.) Symposium on Computational Geometry, pp. 240–246. ACM (2010)Google Scholar
  2. 2.
    Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary relations and multi-labeled trees. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 680–689. SIAM, Philadelphia (2007)Google Scholar
  3. 3.
    Bender, M.A., Cole, R., Raman, R.: Exponential Structures for Efficient Cache-Oblivious Algorithms. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric indexes supporting point location queries. In: Mathieu, C. (ed.) SODA, pp. 635–644. SIAM, Philadelphia (2009)Google Scholar
  5. 5.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Brodal, G.S., Davoodi, P., Rao, S.S.: On Space Efficient Two Dimensional Range Minimum Data Structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brodal, G.S., Jørgensen, A.G.: Data Structures for Range Median Queries. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG 2011, pp. 1–10. ACM, New York (2011), Google Scholar
  9. 9.
    Chan, T.M., Patrascu, M.: Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comput. 39(2), 703–729 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988), prel. vers. FOCS 1985 (1985)Google Scholar
  11. 11.
    Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with applications to orthogonal range maxima. Tech. Rep. CS-TR-12-001, U. Leicester (April 2012),
  12. 12.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM (1984)Google Scholar
  13. 13.
    Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D Range Maximum Queries. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Karpinski, M., Nekrich, Y.: Space Efficient Multi-Dimensional Range Reporting. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 215–224. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Makris, C., Tsakalidis, A.K.: Algorithms for three-dimensional dominance searching in linear space. Inf. Process. Lett. 66(6), 277–283 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mehta, D.P., Sahni, S. (eds.): Handbook of Data Structures and Applications. Chapman & Hall/CRC (2009)Google Scholar
  18. 18.
    Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput. Geom. 42(4), 342–351 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rahman, N., Raman, R.: Rank and select operations on binary strings. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, Springer (2008)Google Scholar
  20. 20.
    Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: Charikar, M. (ed.) SODA 2010, pp. 150–160. SIAM, Philadelphia (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arash Farzan
    • 1
  • J. Ian Munro
    • 2
  • Rajeev Raman
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbückenGermany
  2. 2.University of WaterlooCanada
  3. 3.University of LeicesterUK

Personalised recommendations