Skip to main content

Zero-One Rounding of Singular Vectors

  • Conference paper
Book cover Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We propose a generic and simple technique called dyadic rounding for rounding real vectors to zero-one vectors, and show its several applications in approximating singular vectors of matrices by zero-one vectors, cut decompositions of matrices, and norm optimization problems. Our rounding technique leads to the following consequences.

  1. 1

    Given any A ∈ ℝm ×n, there exists z ∈ {0, 1}n such that

    $$ \frac{\left\|Az\right\|_{q}}{\left\|z\right\|_{p}} \geq \Omega\left(p^{1 - \frac{1}{p}} (\log n)^{\frac{1}{p} - 1}\right) \left\|A\right\|_{p \mapsto q}, $$

    where \(\left\|A\right\|_{p \mapsto q} = \max_{x \neq 0} \left\|Ax\right\|_{q} / \left\|x\right\|_{p}\). Moreover, given any vector v ∈ ℝn we can round it to a vector z ∈ {0, 1}n with the same approximation guarantee as above, but now the guarantee is with respect to \(\left\|Av\right\|_{q}/\left\|Av\right\|_{p}\) instead of \(\left\|A\right\|_{p \mapsto q}\). Although stated for pq norm, this generalizes to the case when \(\left\|Az\right\|_{q}\) is replaced by any norm of z.

  2. 2

    Given any A ∈ ℝm ×n, we can efficiently find z ∈ {0, 1}n such that

    $$ \frac{\left\|Az\right\|}{\left\|z\right\|} \geq \frac{\sigma_{1}(A)}{2 \sqrt{2 \log n}}, $$

    where σ 1(A) is the top singular value of A. Extending this, we can efficiently find orthogonal z 1, z 2, …, z k  ∈ {0, 1}n such that

    $$ \frac{\left\|Az_{i}\right\|}{\left\|z_{i}\right\|} \geq \Omega\left(\frac{\sigma_{k}(A)}{\sqrt{k \log n}}\right), \quad \text{for all $i \in[k]$}. $$

    We complement these results by showing that they are almost tight.

  3. 3

    Given any A ∈ ℝm ×n of rank r, we can approximate it (under the Frobenius norm) by a sum of O(r log2 m log2 n) cut-matrices, within an error of at most \(\left\|A\right\|_{F}/\text{poly}(m, n)\). In comparison, the Singular Value Decomposition uses r rank-1 terms in the sum (but not necessarily cut matrices) and has zero error, whereas the cut decomposition lemma by Frieze and Kannan in their algorithmic version of Szemerédi’s regularity partition [9,10] uses only O(1/ε 2) cut matrices but has a large \({\epsilon} \sqrt{mn} \left\|A\right\|_{F}\) error (under the cut norm). Our algorithm is deterministic and more efficient for the corresponding error range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., de la Vega, F., Kannan, R., Karpinski, M.: Random sampling and approximation of Max-CSPs. Journal of Computer and System Sciences 67, 212–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM Journal on Computing (SICOMP) 35(4), 787–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bilu, Y., Linial, N.: Lifts, discrepancy and nearly optimal spectral gaps. Combinatorica 26, 495–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobas, B., Nikiforov, V.: Graphs and hermitian matrices: discrepancy and singular values. Discrete Mathematics 285 (2004)

    Google Scholar 

  5. Boyd, D.W.: The power method for p-norms. Linear Algebra and Its Applications 9, 95–101 (1974)

    Article  MATH  Google Scholar 

  6. Charles Brubaker, S., Vempala, S.S.: Random Tensors and Planted Cliques. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 406–419. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Deshpande, A., Tulsiani, M., Vishnoi, N.: Algorithms and hardness for subspace approximation. In: ACM-SIAM Symposium on Discrete Algorithms, SODA 2011 (2011)

    Google Scholar 

  8. Doerr, B.: Roundings Respecting Hard Constraints. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 617–628. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Frieze, A., Kannan, R.: The regularity lemma and approximation schemes for dense problems. In: IEEE Symposium on Foundations of Computing (FOCS 1996), pp. 12–20 (1996)

    Google Scholar 

  10. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins University Press (1996)

    Google Scholar 

  12. Nicholas, J.: Higham. Estimating the matrix p-norm. Numerische Mathematik 62, 511–538 (1992)

    Article  MathSciNet  Google Scholar 

  13. Kasiviswanathan, S.P., Rudelson, M., Smith, A., Ullman, J.: The price of privately releasing contingency tables and the spectra of random matrices with correlated rows. In: STOC 2010, pp. 775–784 (2010)

    Google Scholar 

  14. Mahoney, M., Drineas, P.: CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences USA 106, 697–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J.: The determinant bound for discrepancy is almost tight (2011), http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.0767v2.pdf

  16. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optimization Methods and Software 9, 141–160 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Steinberg, D.: Computation of matrix norms with applications to robust optimization. Research thesis. Technion – Israel University of Technology (2005)

    Google Scholar 

  18. Szemerédi, E.: Regular partitions of graphs. Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS), Paris 260, 399–401 (1976)

    Google Scholar 

  19. Vazirani, V.: Approximation Algorithms. Springer (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deshpande, A., Kannan, R., Srivastava, N. (2012). Zero-One Rounding of Singular Vectors. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics