Advertisement

The NOF Multiparty Communication Complexity of Composed Functions

  • Anil Ada
  • Arkadev Chattopadhyay
  • Omar Fawzi
  • Phuong Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

We study the k-party ‘number on the forehead’ communication complexity of composed functions f ∘ g, where f:{0,1} n  → {±1}, g : {0,1} k  → {0,1} and for (x 1,…,x k ) ∈ ({0,1} n ) k , f ∘ g(x 1,…,x k ) = f(…,g(x 1,i ,…,x k,i ), …). We show that there is an O(log3 n) cost simultaneous protocol for \(\textnormal{\textsc{sym}} \circ g\) when k > 1 + logn, \(\textnormal{\textsc{sym}}\) is any symmetric function and g is any function. Previously, an efficient protocol was only known for \(\textnormal{\textsc{sym}} \circ g\) when g is symmetric and “compressible”. We also get a non-simultaneous protocol for \(\textnormal{\textsc{sym}} \circ g\) of cost O((n/2 k ) logn + k logn) for any k ≥ 2.

In the setting of k ≤ 1 + logn, we study more closely functions of the form \(\textnormal{\textsc{majority}} \circ g\), \(\textnormal{\textsc{mod}}_m \circ g\), and \(\textnormal{\textsc{nor}} \circ g\), where the latter two are generalizations of the well-known and studied functions Generalized Inner Product and Disjointness respectively. We characterize the communication complexity of these functions with respect to the choice of g. As the main application of our results, we answer a question posed by Babai et al. (SIAM Journal on Computing, 33:137–166, 2004) and determine the communication complexity of \(\textnormal{\textsc{majority}} \circ \textnormal{\textsc{qcsb}}_k\), where \(\textnormal{\textsc{qcsb}}_k\) is the “quadratic character of the sum of the bits” function.

Keywords

Boolean Function Communication Complexity Informal Statement Player Setting Inside Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ada, A., Chattopadhyay, A., Fawzi, O., Nguyen, P.: The NOF Multiparty Communication Complexity of Composed Functions. Technical report, In Electronic Colloquium on Computational Complexity (ECCC) TR11–155 (2011)Google Scholar
  2. 2.
    Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM Journal on Computing 33, 137–166 (2004)CrossRefGoogle Scholar
  3. 3.
    Babai, L., Kimmel, P.G., Lokam, S.V.: Simultaneous Messages vs. Communication. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 361–372. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Beame, P., Huynh-Ngoc, D.-T.: Multiparty communication complexity and threshold circuit size of AC 0. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 53–62. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  6. 6.
    Beigel, R., Tarui, J.: On ACC. Computational Complexity 4, 350–366 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 94–99. ACM, New York (1983)CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. Technical report. In: Electronic Colloquium on Computational Complexity (ECCC) TR08–002 (2008)Google Scholar
  9. 9.
    Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM Journal on Discrete Mathematics 6(1), 110–123 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Grolmusz, V.: The BNS lower bound for multi-party protocols is nearly optimal. Information and Computation 112, 51–54 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grolmusz, V.: Separating the communication complexities of MOD m and MOD p circuits. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 278–287 (1995)Google Scholar
  12. 12.
    Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 610–618 (1991)CrossRefGoogle Scholar
  13. 13.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge university press (1997)Google Scholar
  14. 14.
    Lee, T., Schechtman, G., Shraibman, A.: Lower bounds on quantum multiparty communication complexity. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pp. 254–262 (2009)Google Scholar
  15. 15.
    Lee, T., Shraibman, A.: Disjointness is hard in the multiparty number-on-the-forehead model. Computational Complexity 18, 309–336 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lee, T., Zhang, S.: Composition Theorems in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 475–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Pudlák, P.: Personal communication (2006)Google Scholar
  18. 18.
    Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Computational Complexity 9(2), 113–122 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1), 145–159 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sherstov, A.A.: The pattern matrix method for lower bounds on quantum communication. In: Proceedings of the 40th Symposium on Theory of Computing (STOC), pp. 85–94 (2007)Google Scholar
  21. 21.
    Sherstov, A.A.: The multiparty communication complexity of set disjointness. Technical report, In Electronic Colloquium on Computational Complexity (ECCC) TR11–145 (2011)Google Scholar
  22. 22.
    Shi, Y., Zhang, Z.: Communication complexities of symmetric XOR functions. Quantum Information and Computation 9, 255–263 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Quantum Information and Computation 9, 444–460 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 209–213. ACM Press, New York (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anil Ada
    • 1
  • Arkadev Chattopadhyay
    • 2
  • Omar Fawzi
    • 1
  • Phuong Nguyen
    • 2
  1. 1.School of Computer ScienceMcGill UniversityCanada
  2. 2.Department of Computer ScienceUniversity of TorontoCanada

Personalised recommendations