Advertisement

Fault Detection and Isolation in Wheeled Mobile Robot

  • Ngoc Bach Hoang
  • Hee-Jun Kang
  • Young-Shick Ro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)

Abstract

This paper presents a fault detection and isolation scheme for wheeled mobile robots. A nonlinear observer is designed based on the mobile robot dynamic model. The fault is detected when at least one of the residuals exceeds its corresponding threshold. After that, three observers are activated to isolate three types of faults: right wheel fault, left wheel fault, and the other changed dynamic faults.

Keywords

wheeled mobile robots nonlinear observer fault detection fault isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ji, M., Sarkar, N.: Supervisory Fault Adaptive Control of a Mobile Robot and Its Application in Sensor-Fault Accommodation. IEEE Transactions on Robotics 23(1), 174–178 (2007)CrossRefGoogle Scholar
  2. 2.
    Meng, J.: Hybrid Fault Adaptive Control of a Wheeled Mobile Robot. IEEE/ASME Transactions on Mechatronics 8(2), 226–233 (2003)CrossRefGoogle Scholar
  3. 3.
    Dongkyoung, C.: Tracking Control of Differential-Drive Wheeled Mobile Robots Using a Backstepping-Like Feedback Linearization. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40(6), 1285–1295 (2010)CrossRefGoogle Scholar
  4. 4.
    Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics. Journal of Robotic Systems, 149–163 (1997)Google Scholar
  5. 5.
    Huang, S.N., Kiang, T.K.: Fault Detection, Isolation, and Accommodation Control in Robotic Systems. IEEE Transactions on Automation Science and Engineering 5(3), 480–489 (2008)CrossRefGoogle Scholar
  6. 6.
    Vemuri, A.T., Polycarpou, M.M., Diakourtis, S.A.: Neural Network Based Fault Detection in Robotic Manipulators. IEEE Transactions on Robotics and Automation 14(2), 342–348 (1998)CrossRefGoogle Scholar
  7. 7.
    Vemuri, A.T., Polycarpou, M.M.: Neural-network-based Robust Fault Diagnosis in Robotic Systems. IEEE Transactions on Neural Networks 8(6), 1410–1420 (1997)CrossRefGoogle Scholar
  8. 8.
    Zhang, X.D., Parisini, T., Polycarpou, M.M.: Adaptive Fault-tolerant Control of Nonlinear Uncertain Systems: an Information-based Diagnostic Approach. IEEE Transactions on Automatic Control 49(8), 1259–1274 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ngoc Bach Hoang
    • 1
  • Hee-Jun Kang
    • 2
  • Young-Shick Ro
    • 2
  1. 1.Graduate School of Electrical EngineeringUniversity of UlsanUlsanSouth Korea
  2. 2.School of Electrical EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations