Skip to main content

Random Hyperbolic Graphs: Degree Sequence and Clustering

(Extended Abstract)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7392)

Abstract

Recently, Papadopoulos, Krioukov, Boguñá and Vahdat [Infocom’10] introduced a random geometric graph model that is based on hyperbolic geometry. The authors argued empirically and by some preliminary mathematical analysis that the resulting graphs have many of the desired properties for models of large real-world graphs, such as high clustering and heavy tailed degree distributions. By computing explicitly a maximum likelihood fit of the Internet graph, they demonstrated impressively that this model is adequate for reproducing the structure of such with high accuracy.

In this work we initiate the rigorous study of random hyperbolic graphs. We compute exact asymptotic expressions for the expected number of vertices of degree k for all k up to the maximum degree and provide small probabilities for large deviations. We also prove a constant lower bound for the clustering coefficient. In particular, our findings confirm rigorously that the degree sequence follows a power-law distribution with controllable exponent and that the clustering is nonvanishing.

See http://arxiv.org/abs/1205.1470 for the full version.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-31585-5_51
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-31585-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 510–519. IEEE (2001)

    Google Scholar 

  2. Anderson, J.W.: Hyperbolic geometry, 2nd edn. Springer (2005)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    MathSciNet  CrossRef  Google Scholar 

  4. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18(3), 279–290 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Bollobás, B., Riordan, O.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, pp. 1–34 (2002)

    Google Scholar 

  6. Borgs, C., Chayes, J., Daskalakis, C., Roch, S.: First to market is not everything: an analysis of preferential attachment with fitness. In: Proceedings of the 39th ACM Symposium on Theory of Computing, pp. 135–144. ACM (2007)

    Google Scholar 

  7. Buckley, P., Osthus, D.: Popularity based random graph models leading to a scale-free degree sequence. Discrete Mathematics 282(1-3), 53–68 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Chierichetti, F., Kumar, R., Lattanzi, S., Panconesi, A., Raghavan, P.: Models for the compressible web. In: Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, pp. 331–340. IEEE (2009)

    Google Scholar 

  9. Cooper, C., Frieze, A.: A general model of web graphs. Random Structures & Algorithms 22(3), 311–335 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Dubhashi, D., Panconesi, A., Press, C.U.: Concentration of measure for the analysis of randomized algorithms. Cambridge University Press (2009)

    Google Scholar 

  11. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Computer Communication Review 29, 251–262 (1999)

    CrossRef  Google Scholar 

  12. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic Geometry of Complex Networks. Physical Review E 82(3) (2010)

    Google Scholar 

  13. Lattanzi, S., Sivakumar, D.: Affiliation networks. In: Proceedings of the 41st ACM Symposium on Theory of Computing, pp. 427–434. ACM (2009)

    Google Scholar 

  14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  15. Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)

    MathSciNet  Google Scholar 

  16. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2), 226–251 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Newman, M., Park, J.: Why social networks are different from other types of networks. Physical Review E 68(3), 036122 (2003)

    Google Scholar 

  18. Papadopoulos, F., Krioukov, D., Boguñá, M., Vahdat, A.: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In: Proceedings of the 29th IEEE International Conference on Computer Communications, INFOCOM 2010, pp. 2973–2981 (2010)

    Google Scholar 

  19. Serrano, M., Boguñá, M.: Clustering in complex networks. i. general formalism. Physical Review E 74(5), 056114 (2006)

    Google Scholar 

  20. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry, 425–443 (1969)

    Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gugelmann, L., Panagiotou, K., Peter, U. (2012). Random Hyperbolic Graphs: Degree Sequence and Clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)