Skip to main content

Byzantine Agreement with a Rational Adversary

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Included in the following conference series:

Abstract

Traditionally, cryptographers assume a “worst-case” adversary who can act arbitrarily. More recently, they have begun to consider rational adversaries who can be expected to act in a utility-maximizing way. Here we apply this model for the first time to the problem of Byzantine agreement (BA) and the closely related problem of broadcast, for natural classes of utilities. Surprisingly, we show that many known results (e.g., equivalence of these problems, or the impossibility of tolerating t ≥ n/2 corruptions) do not hold in the rational model. We study the feasibility of information-theoretic (both perfect and statistical) BA assuming complete or partial knowledge of the adversary’s preferences. We show that perfectly secure BA is possible for t < n corruptions given complete knowledge of the adversary’s preferences, and characterize when statistical security is possible with only partial knowledge. Our protocols have the added advantage of being more efficient than BA protocols secure in the traditional adversarial model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: PODC 2006, pp. 53–62. ACM Press (2006)

    Google Scholar 

  2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: BAR fault tolerance for cooperative services. In: SOSP 2005, pp. 45–58. ACM (2005)

    Google Scholar 

  3. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Baum-Waidner, B., Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement With Good Majority. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 285–295. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  5. Bei, X., Chen, W., Zhang, J.: Distributed consensus resilient to both crash failures and strategic manipulations, arXiv 1203.4324 (2012)

    Google Scholar 

  6. Clement, A., Li, H.C., Napper, J., Martin, J.-P., Alvisi, L., Dahlin, M.: BAR primer. In: DSN 2008, pp. 287–296. IEEE Computer Society (2008)

    Google Scholar 

  7. Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional Byzantine Agreement and Multi-party Computation Secure against Dishonest Minorities from Scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine agreement secure against faulty majorities. In: PODC 2002, pp. 118–126. ACM Press (2002)

    Google Scholar 

  9. Gordon, S.D., Katz, J.: Byzantine agreement with a rational adversary. Rump session presentation, Crypto 2006 (2006)

    Google Scholar 

  10. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Groce, A., Katz, J.: Fair Computation with Rational Players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: Extended abstract. In: STOC 2004, pp. 623–632. ACM Press (2004)

    Google Scholar 

  13. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: FOCS 2005, pp. 585–595. IEEE Computer Society Press (2005)

    Google Scholar 

  14. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM Trans. Programming Language Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  16. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: Bar gossip. In: OSDI 2006, pp. 191–204. USENIX Association (2006)

    Google Scholar 

  17. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an Honest Minority and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groce, A., Katz, J., Thiruvengadam, A., Zikas, V. (2012). Byzantine Agreement with a Rational Adversary. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics