Advertisement

Byzantine Agreement with a Rational Adversary

  • Adam Groce
  • Jonathan Katz
  • Aishwarya Thiruvengadam
  • Vassilis Zikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

Traditionally, cryptographers assume a “worst-case” adversary who can act arbitrarily. More recently, they have begun to consider rational adversaries who can be expected to act in a utility-maximizing way. Here we apply this model for the first time to the problem of Byzantine agreement (BA) and the closely related problem of broadcast, for natural classes of utilities. Surprisingly, we show that many known results (e.g., equivalence of these problems, or the impossibility of tolerating t ≥ n/2 corruptions) do not hold in the rational model. We study the feasibility of information-theoretic (both perfect and statistical) BA assuming complete or partial knowledge of the adversary’s preferences. We show that perfectly secure BA is possible for t < n corruptions given complete knowledge of the adversary’s preferences, and characterize when statistical security is possible with only partial knowledge. Our protocols have the added advantage of being more efficient than BA protocols secure in the traditional adversarial model.

Keywords

Statistical Security Security Parameter Consensus Protocol Rational Player Broadcast Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: PODC 2006, pp. 53–62. ACM Press (2006)Google Scholar
  2. 2.
    Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: BAR fault tolerance for cooperative services. In: SOSP 2005, pp. 45–58. ACM (2005)Google Scholar
  3. 3.
    Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Baum-Waidner, B., Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement With Good Majority. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 285–295. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Bei, X., Chen, W., Zhang, J.: Distributed consensus resilient to both crash failures and strategic manipulations, arXiv 1203.4324 (2012)Google Scholar
  6. 6.
    Clement, A., Li, H.C., Napper, J., Martin, J.-P., Alvisi, L., Dahlin, M.: BAR primer. In: DSN 2008, pp. 287–296. IEEE Computer Society (2008)Google Scholar
  7. 7.
    Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional Byzantine Agreement and Multi-party Computation Secure against Dishonest Minorities from Scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine agreement secure against faulty majorities. In: PODC 2002, pp. 118–126. ACM Press (2002)Google Scholar
  9. 9.
    Gordon, S.D., Katz, J.: Byzantine agreement with a rational adversary. Rump session presentation, Crypto 2006 (2006)Google Scholar
  10. 10.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Groce, A., Katz, J.: Fair Computation with Rational Players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Halpern, J., Teague, V.: Rational secret sharing and multiparty computation: Extended abstract. In: STOC 2004, pp. 623–632. ACM Press (2004)Google Scholar
  13. 13.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: FOCS 2005, pp. 585–595. IEEE Computer Society Press (2005)Google Scholar
  14. 14.
    Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM Trans. Programming Language Systems 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  16. 16.
    Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: Bar gossip. In: OSDI 2006, pp. 191–204. USENIX Association (2006)Google Scholar
  17. 17.
    Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an Honest Minority and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adam Groce
    • 1
  • Jonathan Katz
    • 1
  • Aishwarya Thiruvengadam
    • 1
  • Vassilis Zikas
    • 1
  1. 1.Department of Computer ScienceUniversity of MarylandUSA

Personalised recommendations