A Saturation Method for Collapsible Pushdown Systems

  • Chris Broadbent
  • Arnaud Carayol
  • Matthew Hague
  • Olivier Serre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)


We introduce a natural extension of collapsible pushdown systems called annotated pushdown systems that replaces collapse links with stack annotations. We believe this new model has many advantages. We present a saturation method for global backwards reachability analysis of these models that can also be used to analyse collapsible pushdown systems. Beginning with an automaton representing a set of configurations, we build an automaton accepting all configurations that can reach this set. We also improve upon previous saturation techniques for higher-order pushdown systems by significantly reducing the size of the automaton constructed and simplifying the algorithm and proofs.


Model Check Saturation Function Full Version Reachability Analysis Saturation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atig, M.F.: Global model checking of ordered multi-pushdown systems. In: FSTTCS, pp. 216–227 (2010)Google Scholar
  2. 2.
    Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis. In: POPL, pp. 1–3 (2002)Google Scholar
  3. 3.
    Benois, M.: Parties rationnelles du groupe libre. Comptes-Rendus de l’Acamdémie des Sciences de Paris, Série A, 1188–1190 (1969)Google Scholar
  4. 4.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Meyer, A.: Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 135–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Broadbent, C.H., Carayol, A., Ong, C.-H.L., Serre, O.: Recursion schemes and logical reflection. In: LiCS, pp. 120–129 (2010)Google Scholar
  7. 7.
    Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)Google Scholar
  8. 8.
    Carayol, A.: Regular Sets of Higher-Order Pushdown Stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Carayol, A., Wöhrle, S.: The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95–207 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient Algorithms for Model Checking Pushdown Systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. Electr. Notes Theor. Comput. Sci. 9, 27–37 (1997)CrossRefGoogle Scholar
  14. 14.
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: LiCS, pp. 452–461 (2008)Google Scholar
  15. 15.
    Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-order pushdown systems. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  16. 16.
    Hague, M., Ong, C.-H.L.: Analysing Mu-Calculus Properties of Pushdown Systems. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 187–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Hague, M., Ong, C.-H.L.: A saturation method for the modal μ-calculus over pushdown systems. Inf. Comput. 209(5), 799–821 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kartzow, A., Parys, P.: Strictness of the Collapsible Pushdown Hierarchy. arXiv:1201.3250v1 [cs.FL] (2012)Google Scholar
  19. 19.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe Grammars and Panic Automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Kobayashi, N.: Higher-order model checking: From theory to practice. In: LiCS, pp. 219–224 (2011)Google Scholar
  22. 22.
    Kobayashi, N.: A Practical Linear Time Algorithm for Trivial Automata Model Checking of Higher-Order Recursion Schemes. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 15, 1170–1174 (1976)Google Scholar
  24. 24.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: LiCS, pp. 81–90 (2006)Google Scholar
  25. 25.
    Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with pattern-matching algebraic data types. In: POPL, pp. 587–598 (2011)Google Scholar
  26. 26.
    Parys, P.: Collapse operation increases expressive power of deterministic higher order pushdown automata. In: STACS, pp. 603–614 (2011)Google Scholar
  27. 27.
    Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2), 206–263 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Salvati, S., Walukiewicz, I.: Krivine Machines and Higher-Order Schemes. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 162–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Schwoon, S.: Model-checking Pushdown Systems. PhD thesis, Technical University of Munich (2002)Google Scholar
  30. 30.
    Seth, A.: An alternative construction in symbolic reachability analysis of second order pushdown systems. In: RP, pp. 80–95 (2007)Google Scholar
  31. 31.
    Seth, A.: Games on Higher Order Multi-stack Pushdown Systems. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 203–216. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic Context-Bounded Analysis of Multithreaded Java Programs. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient Algorithms for Alternating Pushdown Systems with an Application to the Computation of Certificate Chains. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chris Broadbent
    • 1
  • Arnaud Carayol
    • 2
  • Matthew Hague
    • 1
    • 2
  • Olivier Serre
    • 1
  1. 1.LIAFAUniversité Paris Diderot – Paris 7 & CNRSFrance
  2. 2.LIGMUniversité Paris-Est & CNRSFrance

Personalised recommendations