A Machine-Independent Characterization of Timed Languages

  • Mikołaj Bojańczyk
  • Sławomir Lasota
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)


We use a variant of Fraenkel-Mostowski sets (known also as nominal sets) as a framework suitable for stating and proving the following two results on timed automata. The first result is a machine-independent characterization of languages of deterministic timed automata. As a second result we define a class of automata, called by us timed register automata, that extends timed automata and is effectively closed under minimization.


Transition Relation Hybrid Automaton Legality Constraint Time Automaton Clock Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L., Wong-Toi, H.: Minimization of Timed Transition Systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. LICS 2011, pp. 355–364 (2011)Google Scholar
  4. 4.
    Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets (submitted, 2012),
  5. 5.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2-3), 291–345 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. Journal of Automata, Languages and Combinatorics 5(4), 371–404 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Finkel, O.: Undecidable problems about timed automata. CoRR, abs/0712.1363 (2007)Google Scholar
  9. 9.
    Francez, N., Kaminski, M.: Finite-memory automata. TCS 134(2), 329–363 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gabbay, M.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic 17(2), 161–229 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3-5), 341–363 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)Google Scholar
  13. 13.
    Maler, O., Pnueli, A.: On Recognizable Timed Languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Springintveld, J., Vaandrager, F.W.: Minimizable Timed Automata. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 130–147. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process. Lett. 99(6), 222–226 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems. Formal Methods in System Design 11(2), 113–136 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikołaj Bojańczyk
    • 1
  • Sławomir Lasota
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawPoland

Personalised recommendations