Advertisement

Determination of Unknown Boundary Condition in the Two-Dimensional Inverse Heat Conduction Problem

  • Bo Wang
  • Guang’an Zou
  • Qiang Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

In this paper, the two-dimensional inverse heat conduction problem governed by the equation with the non-homogeneous term and unknown Neumann boundary condition will be considered, this problem can be divided into two separate problems, which are direct and inverse parabolic problems, finite difference method and finite volume method combined with weight coefficient method are used to solve these two problems, based on the overspecified data, and numerical example will also be presented.

Keywords

inverse heat conduction problem finite difference method finite volume method weight coefficient method numerical example 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ebrahimian, M., Pourgholi, R., Emamjome, M., Reihani, P.: A Numerical Solution of An Inverse Parabolic Problem with Unknown Boundary Conditions. Appl. Math. Comput. 189, 228–234 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Jia, X.Z., Wang, Y.B.: A Boundary Integral Method for Solving Inverse Heat Conduction Problem. J. Inv. Ill-Posed Probl. 14(4), 375–384 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Molhem, H., Pourgholi, R.: A Numerical Algorithm for Solving A One-dimensional Inverse Heat Conduction Problem. J. Math. Statist. 4(1), 60–63 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhi, Q., Fu, C.L., Xiong, X.T.: A Modified Method for A Nonstandard Inverse Heat Conduction problem. Appl. Math. Comput. 180(6), 453–468 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Shidfar, A., Pourgholi, R.: Numerical Approximation of Solution of An Inverse Heat-Conduction Problem Based Legendre Polynomials. Appl. Math. Comput. 175(2), 1366–1374 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Shidfar, A., Damirchi, J., Reihani, P.: An Stable Numerical Algorithm for Identifying the Solution of An Inverse Problem. Appl. Math. Comput. 231–236 (2007)Google Scholar
  7. 7.
    Shidfar, A., Pourgholi, R.: Application of Finite Difference Method to Analysis An Ill-posed Problem. Appl. Math. Comput. 168, 1400–1408 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lesnic, D., Elliott, L., Ingham, D.B.: Application of The Boundary Element Method to Inverse Heat Conduction Problems. J. Heat and Mass Transfer 39(7), 1503–1517 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Reinhardt, H.J.: A Numerical Method for The Solution of Two-Dimensional Inverse Heat Conduction Problems. International Journal for Numerical Methods in Engineering 32, 363–383 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Shidfar, A., Zolfaghari, R., Damirchi, J.: Application of Sinc-collocation Method for Solving an Inverse problem. J. Comput. Appl. Math 233, 545–554 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Pourgholi, R., Rostamian, M.: A Numerical Technique for Solving IHCPs using Tik-honov Regularization Method. Appl. Math. Model 342, 102–2110 (2010)MathSciNetGoogle Scholar
  12. 12.
    Dehghan, M.: Identifying A Control Function in Two-dimensional Parabolic Inverse Problems. Appl. Math. Comput. 143, 375–391 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Thomas, W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer (1997)Google Scholar
  14. 14.
    LeVeque, Randall, J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bo Wang
    • 1
  • Guang’an Zou
    • 1
  • Qiang Wang
    • 2
  1. 1.Institute of Applied Mathematics, College of Mathematics and Information ScienceHenan universityKaifengChina
  2. 2.Center for Applied Physics and Technology, College of EngineeringPeking Univ.BeijingChina

Personalised recommendations