Predict the Tertiary Structure of Protein with Flexible Neural Tree

  • Guangting Shao
  • Yuehui Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


Predicting the tertiary structure of protein from its primary amino acid sequence is a challenging mission for bioinformatics. In this paper we proposes a novel approach of predicting the tertiary structure of protein using the flexible neural tree (FNT) to construct a tree classification model. Two feature extraction methods (the physicochemical composition (PCC)) and the recurrence quantification analysis (RQA)) are employed to extract the features of protein sequence. To value the efficiencies of the proposed method we select two benchmark protein sequence datasets (1189 dataset and 640 dataset), as the test data set. The experimental results show that the proposed method is efficient for the protein structure prediction.


Tertiary structure of protein Tree classification model FNT PCC RQA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levitt, M., Chothia, C.: Structural Patterns in Globular Proteins. Nature 261, 552–558 (1976)CrossRefGoogle Scholar
  2. 2.
    Kumar, M., Bhasin, M., Natt, N.K., Raghava, G.P.S.: BhairPred: Prediction of B-hairpins in A PROtein From Multiple Alignment Information using ANN and SVM techniques. Nucleic Acids Res. 33, 154–159 (2005)CrossRefGoogle Scholar
  3. 3.
    Metfessel, B.A., Saurugger, P.N., Connelly, D.P., Rich, S.T.: Cross-validation of Protein Structural Class Prediction using Statistical clustering and neural networks. Protein Sci. 1171–1182 (1993)Google Scholar
  4. 4.
    Cai, Y.D., et al.: Prediction of Protein Structural Classes by Support Vector Machines. Computers & Chemistry 26(3), 293–296 (2002)CrossRefGoogle Scholar
  5. 5.
    Chen, Y.H., Abraham, A., Yang, J.: Feature Selection and Intrusion Detection Using Hybrid Flexible Neural Tree, pp. 439–444. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Salustowiczand, R., Schmidhuber, J.: Probabilistic Incremental Program Evolution. Evolutionary Computation 5(2), 123–141 (1997)CrossRefGoogle Scholar
  7. 7.
    Wang, Z.X., Yuan, Z.: How good is The Prediction of Protein Structural Class by The Component-coupled Method. Proteins 38, 165–175 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, K., Kurgan, L.A., Ruan, J.: Prediction of Protein Structural Class using Novel Evolutionary Collocation-based Sequence Representation. J. Comput. Chem. 29, 1596–1604 (2008)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Chen, L.X., et al.: Predicting protein Structural Class Based on Multi-features Fusion. Journal of Theoretical Biology 253, 388–392 (2008)CrossRefGoogle Scholar
  10. 10.
    Yang, J.Y., Deogun, J.: Classifying G Protein-Coupled Receptors with Multiple Physicochemical Properties. Chem-Bio Informatics Journal 8, 49–57 (2008)CrossRefGoogle Scholar
  11. 11.
    Giuliani, A., Sirabella, P., Benigni, R., Colosimo, A.: Mapping Protein Sequence Spaces by Recurrence: A Case Study On Chimeric Structures. Protein Eng. 13, 671–678 (2000)CrossRefGoogle Scholar
  12. 12.
    Yang, J.Y., Peng, Z.L., et al.: Prediction of Protein Structural Classes by Recurrence Quantification Analysis Based on Chaos Game Representation. J. Theor. Biol. 257(4), 618–626 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, Z.X., Yuan, Z.: How Good Is The Prediction of Protein Structural Class by The Component-coupled Method? Pattern Recogn. 38, 165–175 (2000)Google Scholar
  14. 14.
    Kurgan, L.A., Homaeian, L.: Prediction of Structural Classes for Protein Sequences and Domains-Impact of Prediction Algorithms, Sequence Representation and Homology, and Test Procedures on Accuracy. Pattern Recogn. 39, 2323–2343 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kedarisetti, K.D., Kurgan, L.A., Dick, S.: Classifier Ensembles for Protein Structural Class Prediction with Varying Homology. Biochem. Biophys. Res. Commun. 348, 981–988 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhang, T.L., Ding, Y.S., Chou, K.C.: Prediction Protein Structural Classes with Pseudo-amino Acid Composition: Approximate Entropy and Hydrophobicity Pattern. J. Theor. Biol. 250, 186–193 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, K., Kurgan, A., Ruan, J.S.: Prediction of Protein Structural Class using Novel Evolutionary Collocation-Based Sequence Representation. J. Computational Chemistry 29, 1596–1604 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guangting Shao
    • 1
  • Yuehui Chen
    • 1
  1. 1.Computational Intelligence Lab, Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina

Personalised recommendations