Advertisement

Knowledge Reduction Based on Evidence Reasoning Theory in Interval Ordered Information Systems

  • Hong Wang
  • Huijuan Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)

Abstract

Rough set theory has been considered as a useful tool to model the vagueness, imprecision, and uncertainty, and has been applied successfully in many fields. In this paper, the basic concepts and properties of knowledge reduction based on evidence reasoning theory are discussed. Furthermore, the characterization and knowledge reduction approaches based on evidence reasoning theory are obtained.

Keywords

Knowledge reduction Evidence reasoning theory Dominance relation Interval information systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)zbMATHCrossRefGoogle Scholar
  3. 3.
    Duntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gediga, G., Duntsch, I.: Rough approximation quality revisited. Artificial Intelligence 132, 219–234 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)CrossRefGoogle Scholar
  6. 6.
    Liang, J.Y., Dang, C.Y., Chin, K.S.: A new method for measuring uncertainty and fuzziness in rough set theory. International Journal of General Systems 31(4), 331–342 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Qian, Y.H., Liang, J.Y., Li, D.Y., Zhang, H.Y., Dang, C.Y.: Measures for evaluating the decision performance of a decision table in rough set theory. Infoormation Science 178, 181–202 (2002)CrossRefGoogle Scholar
  8. 8.
    Xu, Z.B., Liang, J.Y., Dang, C.Y., Chin, K.S.: Inclusion degree: A perspective on measures for rough set data analysis. Informatin Sciences 141, 227–236 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Słowiński, R.: A New Rough Set Approach to Multicriteria and Multiattribute Classification. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 60–67. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research 138, 247–259 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Interval ordered information systems. Comuters and Mathematics with Application 56(8), 1994–2009 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hong Wang
    • 1
  • Huijuan Shi
    • 1
  1. 1.College of Mathematics and Computer ScienceShanxi Normal UniversityLinfenP.R. China

Personalised recommendations