A Differential Evolution Approach for NTJ-NFSSP with SDSTs and RDs

  • Rong Hu
  • Xianghu Meng
  • Bin Qian
  • Kun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7390)


In this paper, an efficient differential evolution approach, namely DE_NTJ, is presented to minimize the number of tardy jobs (NTJ) for the no-wait flow-shop scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and release dates (RDs), which is a complex problem and can be abbreviated as NTJ-NFSSP with SDSTs and RDs. To balance the exploration and exploitation abilities of our DE_NTJ, DE-based global search is utilized to obtain the promising regions or solutions over the solution space, and a local search based on the interchange-based neighborhood and problem’s properties is developed to exploit the neighborhoods from these regions. Simulation results based on a set of random instances show the superiority of DE_NTJ in terms of searching quality, efficiency, and robustness.


Differential evolution no-wait flow-shop scheduling sequence dependent setup times and release dates number of tardy jobs local search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jin, F., Song, S.J., Wu, C.: A Simulated Annealing Algorithm for Single Machine Scheduling Problems with Family Setups. Computers & Operations Research 36(7), 2133–2138 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Rajendran, C.: A no-wait Flowshop Scheduling Heuristic to Minimize Makespan. Journal of the Operational Research Society 45(4), 472–478 (1994)zbMATHGoogle Scholar
  3. 3.
    Hall, N.G., Sriskandarayah, C.: A Survey of Machine Scheduling Problems with Blocking and no-wait in Process. Operations Research 44(3), 510–525 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Raaymakers, W.H.M., Hoogeveen, J.A.: Scheduling Multipurpose Batch Process Industries with no-wait Restrictions by Simulated Annealing. European Journal of Operational Research 126(1), 131–151 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Allahverdi, A., Gupta, J.N.D., Aldowaisan, T.: A Review of Scheduling Research involving Setup Considerations. Omega-Int. J. Manage. S. 27(2), 219–239 (1999)CrossRefGoogle Scholar
  6. 6.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A Survey of Scheduling Problems with Setup Times or Costs. European Journal of Operational Research 187(3), 985–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice-Hall (2005)Google Scholar
  8. 8.
    Storn, R., Price, K.: Differential Evolution–a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: Differential Evolution Algorithm for Permutation Flowshop Sequencing Problem with Makespan Criterion. In: Proceedings of 4th International Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey, pp. 442–452 (2004)Google Scholar
  10. 10.
    Nearchou, A.C.: A Differential Evolution Approach for the Common Due Date Early/Tardy Job Scheduling Problem. Computers & Operations Research 35(4), 1329–1343 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Qian, B., Wang, L., Hu, R., Huang, D.X., Wang, X.: A DE-based Approach to no-wait Flow-shop Scheduling. Computers & Industrial Engineering 57(3), 787–805 (2009)CrossRefGoogle Scholar
  12. 12.
    Pan, Q.K., Tasgetiren, M.F., Liang, Y.C.: A Discrete Differential Evolution Algorithm for the Permutation Flowshop Scheduling Problem. Computers & Industrial Engineering 55(4), 795–816 (2008)CrossRefGoogle Scholar
  13. 13.
    Qian, B., Zhou, H.B., Hu, R., Xiang, F.H.: Hybrid Differential Evolution Optimization for No-wait Flow-shop Scheduling with Sequence-dependent Setup Times and Release Dates. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 600–611. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Qian, B., Wang, L., Hu, R., Wang, W.L., Huang, D.X., Wang, X.: A Hybrid Differential Evolution for Permutation Flow-shop Scheduling. International Journal of Advanced Manufacturing Technology 38(7-8), 757–777 (2008)CrossRefGoogle Scholar
  15. 15.
    Price, K., Storn, R.: Differential Evolution (DE) for Continuous Function Optimization (2012),
  16. 16.
    Ruiz, R., Stützle, T.: An Iterated Greedy Heuristic for the Sequence Dependent Setup Times Flowshop Problem with Makespan and Weighted Tardiness Objectives. European Journal of Operational Research 187(3), 1143–1159 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rong Hu
    • 1
  • Xianghu Meng
    • 1
  • Bin Qian
    • 1
  • Kun Li
    • 1
  1. 1.Department of AutomationKunming University of Science and TechnologyKunmingChina

Personalised recommendations